Nuprl Lemma : separable-kernel-iff

rv:InnerProductSpace. ∀e:Point(rv). ∀f:{h:Point(rv)| h ⋅ r0}  ⟶ ℝ ⟶ ℝ.
  (trans-kernel-fun(rv;e;f)
   (separable-kernel(rv;e;f)
     ⇐⇒ ∃phi:ℝ ⟶ ℝ
          ∃psi:{h:Point(rv)| h ⋅ r0}  ⟶ {r:ℝr0 < r} 
           ((∀h:{h:Point(rv)| h ⋅ r0} . ∀t:ℝ.  ((f t) ((phi t) (psi h))))
           ∧ ((phi r0) r0)
           ∧ ((psi 0) r1)
           ∧ (∀t,s:ℝ.  ((t < s)  ((phi t) < (phi s))))
           ∧ (∀t:ℝ. ∃s:ℝ((phi s) t))
           ∧ (∀h1,h2:{h:Point(rv)| h ⋅ r0} .  (psi h1 ≠ psi h2  h1 h2))
           ∧ (∀t,s:ℝ.  (phi t ≠ phi  t ≠ s)))))


Proof




Definitions occuring in Statement :  separable-kernel: separable-kernel(rv;e;f) trans-kernel-fun: trans-kernel-fun(rv;e;f) rv-ip: x ⋅ y inner-product-space: InnerProductSpace rv-0: 0 rneq: x ≠ y rless: x < y req: y rmul: b int-to-real: r(n) real: all: x:A. B[x] exists: x:A. B[x] iff: ⇐⇒ Q implies:  Q and: P ∧ Q set: {x:A| B[x]}  apply: a function: x:A ⟶ B[x] natural_number: $n
Definitions unfolded in proof :  all: x:A. B[x] member: t ∈ T implies:  Q iff: ⇐⇒ Q and: P ∧ Q separable-kernel: separable-kernel(rv;e;f) exists: x:A. B[x] uall: [x:A]. B[x] prop: rev_implies:  Q subtype_rel: A ⊆B guard: {T} uimplies: supposing a
Lemmas referenced :  separable-kernel-properties separable-kernel_wf Error :ss-point_wf,  real-vector-space_subtype1 inner-product-space_subtype subtype_rel_transitivity inner-product-space_wf real-vector-space_wf Error :separation-space_wf,  req_wf rv-ip_wf int-to-real_wf rmul_wf real_wf rless_wf rv-0ip rv-0_wf rneq_wf Error :ss-sep_wf,  trans-kernel-fun_wf
Rules used in proof :  cut introduction extract_by_obid sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity lambdaFormation_alt hypothesis sqequalHypSubstitution dependent_functionElimination thin hypothesisEquality independent_functionElimination independent_pairFormation productElimination universeIsType isectElimination dependent_pairFormation_alt functionExtensionality applyEquality because_Cache sqequalRule setEquality instantiate independent_isectElimination closedConclusion natural_numberEquality functionIsType productIsType setIsType inhabitedIsType lambdaEquality_alt setElimination rename dependent_set_memberEquality_alt

Latex:
\mforall{}rv:InnerProductSpace.  \mforall{}e:Point(rv).  \mforall{}f:\{h:Point(rv)|  h  \mcdot{}  e  =  r0\}    {}\mrightarrow{}  \mBbbR{}  {}\mrightarrow{}  \mBbbR{}.
    (trans-kernel-fun(rv;e;f)
    {}\mRightarrow{}  (separable-kernel(rv;e;f)
          \mLeftarrow{}{}\mRightarrow{}  \mexists{}phi:\mBbbR{}  {}\mrightarrow{}  \mBbbR{}
                    \mexists{}psi:\{h:Point(rv)|  h  \mcdot{}  e  =  r0\}    {}\mrightarrow{}  \{r:\mBbbR{}|  r0  <  r\} 
                      ((\mforall{}h:\{h:Point(rv)|  h  \mcdot{}  e  =  r0\}  .  \mforall{}t:\mBbbR{}.    ((f  h  t)  =  ((phi  t)  *  (psi  h))))
                      \mwedge{}  ((phi  r0)  =  r0)
                      \mwedge{}  ((psi  0)  =  r1)
                      \mwedge{}  (\mforall{}t,s:\mBbbR{}.    ((t  <  s)  {}\mRightarrow{}  ((phi  t)  <  (phi  s))))
                      \mwedge{}  (\mforall{}t:\mBbbR{}.  \mexists{}s:\mBbbR{}.  ((phi  s)  =  t))
                      \mwedge{}  (\mforall{}h1,h2:\{h:Point(rv)|  h  \mcdot{}  e  =  r0\}  .    (psi  h1  \mneq{}  psi  h2  {}\mRightarrow{}  h1  \#  h2))
                      \mwedge{}  (\mforall{}t,s:\mBbbR{}.    (phi  t  \mneq{}  phi  s  {}\mRightarrow{}  t  \mneq{}  s)))))



Date html generated: 2020_05_20-PM-01_17_12
Last ObjectModification: 2019_12_09-PM-11_01_49

Theory : inner!product!spaces


Home Index