Nuprl Lemma : separable-kernel-properties

rv:InnerProductSpace. ∀e:Point(rv). ∀f:{h:Point(rv)| h ⋅ r0}  ⟶ ℝ ⟶ ℝ.
  (trans-kernel-fun(rv;e;f)
   (∀g:ℝ ⟶ ℝ. ∀k:{h:Point(rv)| h ⋅ r0}  ⟶ ℝ.
        ((∀h:{h:Point(rv)| h ⋅ r0} . ∀t:ℝ.  ((f t) ((g t) (k h))))
         (∃phi:ℝ ⟶ ℝ
             ∃psi:{h:Point(rv)| h ⋅ r0}  ⟶ {r:ℝr0 < r} 
              ((∀h:{h:Point(rv)| h ⋅ r0} . ∀t:ℝ.  ((f t) ((phi t) (psi h))))
              ∧ ((phi r0) r0)
              ∧ ((psi 0) r1)
              ∧ (∀t,s:ℝ.  ((t < s)  ((phi t) < (phi s))))
              ∧ (∀t:ℝ. ∃s:ℝ((phi s) t))
              ∧ (∀h1,h2:{h:Point(rv)| h ⋅ r0} .  (psi h1 ≠ psi h2  h1 h2))
              ∧ (∀t,s:ℝ.  (phi t ≠ phi  t ≠ s)))))))


Proof




Definitions occuring in Statement :  trans-kernel-fun: trans-kernel-fun(rv;e;f) rv-ip: x ⋅ y inner-product-space: InnerProductSpace rv-0: 0 rneq: x ≠ y rless: x < y req: y rmul: b int-to-real: r(n) real: all: x:A. B[x] exists: x:A. B[x] implies:  Q and: P ∧ Q set: {x:A| B[x]}  apply: a function: x:A ⟶ B[x] natural_number: $n
Definitions unfolded in proof :  all: x:A. B[x] implies:  Q trans-kernel-fun: trans-kernel-fun(rv;e;f) and: P ∧ Q exists: x:A. B[x] member: t ∈ T uall: [x:A]. B[x] subtype_rel: A ⊆B prop: guard: {T} uimplies: supposing a iff: ⇐⇒ Q rev_implies:  Q less_than: a < b squash: T less_than': less_than'(a;b) true: True or: P ∨ Q rneq: x ≠ y uiff: uiff(P;Q) req_int_terms: t1 ≡ t2 false: False not: ¬A top: Top rdiv: (x/y) cand: c∧ B bool: 𝔹 unit: Unit it: btrue: tt bfalse: ff sq_type: SQType(T) bnot: ¬bb ifthenelse: if then else fi  assert: b nequal: a ≠ b ∈  rat_term_to_real: rat_term_to_real(f;t) rtermConstant: "const" rat_term_ind: rat_term_ind pi1: fst(t) rtermDivide: num "/" denom rtermVar: rtermVar(var) pi2: snd(t) rev_uimplies: rev_uimplies(P;Q) ss-eq: Error :ss-eq
Lemmas referenced :  rmul_wf rv-0ip rv-0_wf inner-product-space_subtype req_wf rv-ip_wf int-to-real_wf real_wf rless_wf rneq_wf Error :ss-sep_wf,  trans-kernel-fun_wf Error :ss-point_wf,  real-vector-space_subtype1 subtype_rel_transitivity inner-product-space_wf real-vector-space_wf Error :separation-space_wf,  rless-int rless-implies-rless rsub_wf rmul-is-positive itermSubtract_wf itermMultiply_wf itermVar_wf itermConstant_wf req-iff-rsub-is-0 rless_functionality real_polynomial_null istype-int real_term_value_sub_lemma istype-void real_term_value_mul_lemma real_term_value_var_lemma real_term_value_const_lemma assert-rat-term-eq2 rtermDivide_wf rtermVar_wf rtermConstant_wf eq_int_wf eqtt_to_assert assert_of_eq_int eqff_to_assert bool_cases_sqequal subtype_base_sq bool_wf bool_subtype_base assert-bnot neg_assert_of_eq_int rdiv_wf rinv_wf2 req_functionality req_weakening req_transitivity rmul_functionality rmul-rinv3 req_inversion iff_weakening_uiff rmul_preserves_rless rless_transitivity2 rleq_weakening_rless rless_irreflexivity rmul_reverses_rless_iff rneq-rmul rmul_preserves_rneq_iff2 rneq_functionality rneq_irreflexivity Error :ss-eq_weakening
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity lambdaFormation_alt sqequalHypSubstitution productElimination thin dependent_pairFormation_alt lambdaEquality_alt cut introduction extract_by_obid isectElimination applyEquality hypothesisEquality hypothesis dependent_set_memberEquality_alt sqequalRule universeIsType natural_numberEquality productIsType functionIsType because_Cache setIsType setElimination rename inhabitedIsType instantiate independent_isectElimination dependent_functionElimination independent_functionElimination independent_pairFormation imageMemberEquality baseClosed unionElimination inrFormation_alt inlFormation_alt approximateComputation int_eqEquality isect_memberEquality_alt voidElimination equalityElimination int_eqReduceTrueSq equalityTransitivity equalitySymmetry equalityIstype promote_hyp cumulativity int_eqReduceFalseSq closedConclusion

Latex:
\mforall{}rv:InnerProductSpace.  \mforall{}e:Point(rv).  \mforall{}f:\{h:Point(rv)|  h  \mcdot{}  e  =  r0\}    {}\mrightarrow{}  \mBbbR{}  {}\mrightarrow{}  \mBbbR{}.
    (trans-kernel-fun(rv;e;f)
    {}\mRightarrow{}  (\mforall{}g:\mBbbR{}  {}\mrightarrow{}  \mBbbR{}.  \mforall{}k:\{h:Point(rv)|  h  \mcdot{}  e  =  r0\}    {}\mrightarrow{}  \mBbbR{}.
                ((\mforall{}h:\{h:Point(rv)|  h  \mcdot{}  e  =  r0\}  .  \mforall{}t:\mBbbR{}.    ((f  h  t)  =  ((g  t)  *  (k  h))))
                {}\mRightarrow{}  (\mexists{}phi:\mBbbR{}  {}\mrightarrow{}  \mBbbR{}
                          \mexists{}psi:\{h:Point(rv)|  h  \mcdot{}  e  =  r0\}    {}\mrightarrow{}  \{r:\mBbbR{}|  r0  <  r\} 
                            ((\mforall{}h:\{h:Point(rv)|  h  \mcdot{}  e  =  r0\}  .  \mforall{}t:\mBbbR{}.    ((f  h  t)  =  ((phi  t)  *  (psi  h))))
                            \mwedge{}  ((phi  r0)  =  r0)
                            \mwedge{}  ((psi  0)  =  r1)
                            \mwedge{}  (\mforall{}t,s:\mBbbR{}.    ((t  <  s)  {}\mRightarrow{}  ((phi  t)  <  (phi  s))))
                            \mwedge{}  (\mforall{}t:\mBbbR{}.  \mexists{}s:\mBbbR{}.  ((phi  s)  =  t))
                            \mwedge{}  (\mforall{}h1,h2:\{h:Point(rv)|  h  \mcdot{}  e  =  r0\}  .    (psi  h1  \mneq{}  psi  h2  {}\mRightarrow{}  h1  \#  h2))
                            \mwedge{}  (\mforall{}t,s:\mBbbR{}.    (phi  t  \mneq{}  phi  s  {}\mRightarrow{}  t  \mneq{}  s)))))))



Date html generated: 2020_05_20-PM-01_17_07
Last ObjectModification: 2019_12_09-PM-11_13_20

Theory : inner!product!spaces


Home Index