Nuprl Lemma : discrete-unary_wf

[C:SmallCategory]. ∀[A,B:Type]. ∀[f:A ⟶ B]. ∀[X:ps_context{j:l}(C)]. ∀[t:{X ⊢ _:discr(A)}].
  (discrete-unary(t;x.f[x]) ∈ {X ⊢ _:discr(B)})


Proof




Definitions occuring in Statement :  discrete-unary: discrete-unary(t;x.f[x]) discrete-presheaf-type: discr(T) presheaf-term: {X ⊢ _:A} ps_context: __⊢ uall: [x:A]. B[x] so_apply: x[s] member: t ∈ T function: x:A ⟶ B[x] universe: Type small-category: SmallCategory
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T discrete-unary: discrete-unary(t;x.f[x]) presheaf-term: {X ⊢ _:A} so_apply: x[s] subtype_rel: A ⊆B presheaf-type-at: A(a) pi1: fst(t) discrete-presheaf-type: discr(T) uimplies: supposing a all: x:A. B[x]
Lemmas referenced :  presheaf-term-at_wf discrete-presheaf-type_wf subtype_rel_self subtype_rel-equal presheaf-type-at_wf I_set_wf cat-ob_wf presheaf_type_at_pair_lemma presheaf_type_ap_morph_pair_lemma discrete-presheaf-term-at-morph small-category-cumulativity-2 ps_context_cumulativity2 cat-arrow_wf psc-restriction_wf presheaf-type-ap-morph_wf presheaf-term_wf ps_context_wf istype-universe small-category_wf
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation_alt introduction cut sqequalRule dependent_set_memberEquality_alt lambdaEquality_alt applyEquality hypothesisEquality extract_by_obid sqequalHypSubstitution isectElimination thin hypothesis independent_isectElimination universeIsType lambdaFormation_alt dependent_functionElimination Error :memTop,  instantiate cumulativity because_Cache inhabitedIsType functionIsType equalityIstype axiomEquality equalityTransitivity equalitySymmetry isect_memberEquality_alt isectIsTypeImplies universeEquality

Latex:
\mforall{}[C:SmallCategory].  \mforall{}[A,B:Type].  \mforall{}[f:A  {}\mrightarrow{}  B].  \mforall{}[X:ps\_context\{j:l\}(C)].  \mforall{}[t:\{X  \mvdash{}  \_:discr(A)\}].
    (discrete-unary(t;x.f[x])  \mmember{}  \{X  \mvdash{}  \_:discr(B)\})



Date html generated: 2020_05_20-PM-01_34_19
Last ObjectModification: 2020_04_02-PM-06_33_35

Theory : presheaf!models!of!type!theory


Home Index