Nuprl Lemma : discrete-unary_wf
∀[C:SmallCategory]. ∀[A,B:Type]. ∀[f:A ⟶ B]. ∀[X:ps_context{j:l}(C)]. ∀[t:{X ⊢ _:discr(A)}].
  (discrete-unary(t;x.f[x]) ∈ {X ⊢ _:discr(B)})
Proof
Definitions occuring in Statement : 
discrete-unary: discrete-unary(t;x.f[x])
, 
discrete-presheaf-type: discr(T)
, 
presheaf-term: {X ⊢ _:A}
, 
ps_context: __⊢
, 
uall: ∀[x:A]. B[x]
, 
so_apply: x[s]
, 
member: t ∈ T
, 
function: x:A ⟶ B[x]
, 
universe: Type
, 
small-category: SmallCategory
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
discrete-unary: discrete-unary(t;x.f[x])
, 
presheaf-term: {X ⊢ _:A}
, 
so_apply: x[s]
, 
subtype_rel: A ⊆r B
, 
presheaf-type-at: A(a)
, 
pi1: fst(t)
, 
discrete-presheaf-type: discr(T)
, 
uimplies: b supposing a
, 
all: ∀x:A. B[x]
Lemmas referenced : 
presheaf-term-at_wf, 
discrete-presheaf-type_wf, 
subtype_rel_self, 
subtype_rel-equal, 
presheaf-type-at_wf, 
I_set_wf, 
cat-ob_wf, 
presheaf_type_at_pair_lemma, 
presheaf_type_ap_morph_pair_lemma, 
discrete-presheaf-term-at-morph, 
small-category-cumulativity-2, 
ps_context_cumulativity2, 
cat-arrow_wf, 
psc-restriction_wf, 
presheaf-type-ap-morph_wf, 
presheaf-term_wf, 
ps_context_wf, 
istype-universe, 
small-category_wf
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation_alt, 
introduction, 
cut, 
sqequalRule, 
dependent_set_memberEquality_alt, 
lambdaEquality_alt, 
applyEquality, 
hypothesisEquality, 
extract_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
thin, 
hypothesis, 
independent_isectElimination, 
universeIsType, 
lambdaFormation_alt, 
dependent_functionElimination, 
Error :memTop, 
instantiate, 
cumulativity, 
because_Cache, 
inhabitedIsType, 
functionIsType, 
equalityIstype, 
axiomEquality, 
equalityTransitivity, 
equalitySymmetry, 
isect_memberEquality_alt, 
isectIsTypeImplies, 
universeEquality
Latex:
\mforall{}[C:SmallCategory].  \mforall{}[A,B:Type].  \mforall{}[f:A  {}\mrightarrow{}  B].  \mforall{}[X:ps\_context\{j:l\}(C)].  \mforall{}[t:\{X  \mvdash{}  \_:discr(A)\}].
    (discrete-unary(t;x.f[x])  \mmember{}  \{X  \mvdash{}  \_:discr(B)\})
Date html generated:
2020_05_20-PM-01_34_19
Last ObjectModification:
2020_04_02-PM-06_33_35
Theory : presheaf!models!of!type!theory
Home
Index