Nuprl Lemma : presheaf-snd-pair
∀[C:SmallCategory]. ∀[X:ps_context{j:l}(C)]. ∀[A:{X ⊢ _}]. ∀[B:{X.A ⊢ _}]. ∀[u:{X ⊢ _:A}]. ∀[v:{X ⊢ _:(B)[u]}].
  (presheaf-pair(u;v).2 = v ∈ {X ⊢ _:(B)[u]})
Proof
Definitions occuring in Statement : 
presheaf-pair: presheaf-pair(u;v)
, 
presheaf-snd: p.2
, 
pscm-id-adjoin: [u]
, 
psc-adjoin: X.A
, 
presheaf-term: {X ⊢ _:A}
, 
pscm-ap-type: (AF)s
, 
presheaf-type: {X ⊢ _}
, 
ps_context: __⊢
, 
uall: ∀[x:A]. B[x]
, 
equal: s = t ∈ T
, 
small-category: SmallCategory
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
uimplies: b supposing a
, 
subtype_rel: A ⊆r B
, 
presheaf-term: {X ⊢ _:A}
, 
presheaf-pair: presheaf-pair(u;v)
, 
presheaf-snd: p.2
, 
pi2: snd(t)
Lemmas referenced : 
presheaf-term-equal, 
presheaf-term_wf, 
pscm-ap-type_wf, 
psc-adjoin_wf, 
small-category-cumulativity-2, 
ps_context_cumulativity2, 
presheaf-type-cumulativity2, 
pscm-id-adjoin_wf, 
presheaf-type_wf, 
ps_context_wf, 
small-category_wf, 
I_set_wf, 
cat-ob_wf
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation_alt, 
introduction, 
cut, 
equalitySymmetry, 
extract_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
thin, 
hypothesisEquality, 
independent_isectElimination, 
hypothesis, 
universeIsType, 
instantiate, 
applyEquality, 
sqequalRule, 
because_Cache, 
isect_memberEquality_alt, 
axiomEquality, 
isectIsTypeImplies, 
inhabitedIsType, 
setElimination, 
rename, 
lambdaEquality_alt, 
functionExtensionality
Latex:
\mforall{}[C:SmallCategory].  \mforall{}[X:ps\_context\{j:l\}(C)].  \mforall{}[A:\{X  \mvdash{}  \_\}].  \mforall{}[B:\{X.A  \mvdash{}  \_\}].  \mforall{}[u:\{X  \mvdash{}  \_:A\}].
\mforall{}[v:\{X  \mvdash{}  \_:(B)[u]\}].
    (presheaf-pair(u;v).2  =  v)
Date html generated:
2020_05_20-PM-01_33_26
Last ObjectModification:
2020_04_02-PM-06_31_16
Theory : presheaf!models!of!type!theory
Home
Index