Nuprl Lemma : IdNotHomotopicConst_wf

[n:ℕ]. (IdNotHomotopicConst(n) ∈ ℙ)


Proof




Definitions occuring in Statement :  IdNotHomotopicConst: IdNotHomotopicConst(n) nat: uall: [x:A]. B[x] prop: member: t ∈ T
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T IdNotHomotopicConst: IdNotHomotopicConst(n) all: x:A. B[x] top: Top and: P ∧ Q prop: so_lambda: λ2x.t[x] nat: ge: i ≥  decidable: Dec(P) or: P ∨ Q uimplies: supposing a not: ¬A implies:  Q satisfiable_int_formula: satisfiable_int_formula(fmla) exists: x:A. B[x] false: False cand: c∧ B iff: ⇐⇒ Q rev_implies:  Q le: A ≤ B less_than': less_than'(a;b) subtype_rel: A ⊆B real-unit-sphere: S(n) so_apply: x[s]
Lemmas referenced :  member_rccint_lemma istype-void not_wf exists_wf real_wf rleq_wf int-to-real_wf real-unit-sphere_wf all_wf req-vec_wf nat_properties decidable__le full-omega-unsat intformand_wf intformnot_wf intformle_wf itermConstant_wf itermAdd_wf itermVar_wf istype-int int_formula_prop_and_lemma int_formula_prop_not_lemma int_formula_prop_le_lemma int_term_value_constant_lemma int_term_value_add_lemma int_term_value_var_lemma int_formula_prop_wf istype-le rleq-int istype-false rleq_weakening_equal req_wf istype-nat
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation_alt introduction cut sqequalRule extract_by_obid sqequalHypSubstitution dependent_functionElimination thin isect_memberEquality_alt voidElimination hypothesis isectElimination functionEquality closedConclusion setEquality productEquality natural_numberEquality hypothesisEquality lambdaFormation_alt universeIsType setElimination rename because_Cache lambdaEquality_alt dependent_set_memberEquality_alt addEquality unionElimination independent_isectElimination approximateComputation independent_functionElimination dependent_pairFormation_alt int_eqEquality independent_pairFormation applyEquality productElimination productIsType inhabitedIsType equalityTransitivity equalitySymmetry setIsType functionIsType axiomEquality

Latex:
\mforall{}[n:\mBbbN{}].  (IdNotHomotopicConst(n)  \mmember{}  \mBbbP{})



Date html generated: 2019_10_30-AM-11_29_57
Last ObjectModification: 2019_08_05-PM-04_05_26

Theory : real!vectors


Home Index