Nuprl Lemma : real-ball-0
∀[r:{r:ℝ| r0 ≤ r} ]. B(0;r) ≡ Top
Proof
Definitions occuring in Statement : 
real-ball: B(n;r), 
rleq: x ≤ y, 
int-to-real: r(n), 
real: ℝ, 
ext-eq: A ≡ B, 
uall: ∀[x:A]. B[x], 
top: Top, 
set: {x:A| B[x]} , 
natural_number: $n
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x], 
member: t ∈ T, 
ext-eq: A ≡ B, 
and: P ∧ Q, 
subtype_rel: A ⊆r B, 
top: Top, 
nat: ℕ, 
le: A ≤ B, 
less_than': less_than'(a;b), 
not: ¬A, 
implies: P ⇒ Q, 
false: False, 
real-ball: B(n;r), 
real-vec: ℝ^n, 
int_seg: {i..j-}, 
lelt: i ≤ j < k, 
uimplies: b supposing a, 
satisfiable_int_formula: satisfiable_int_formula(fmla), 
exists: ∃x:A. B[x], 
all: ∀x:A. B[x], 
prop: ℙ, 
real-vec-norm: ||x||, 
dot-product: x⋅y, 
subtract: n - m, 
so_lambda: λ2x.t[x], 
so_apply: x[s], 
less_than: a < b, 
squash: ↓T, 
true: True, 
sq_stable: SqStable(P), 
uiff: uiff(P;Q), 
rev_uimplies: rev_uimplies(P;Q)
Lemmas referenced : 
istype-void, 
real-ball_wf, 
istype-le, 
int_seg_properties, 
full-omega-unsat, 
intformand_wf, 
intformless_wf, 
itermVar_wf, 
itermConstant_wf, 
intformle_wf, 
istype-int, 
int_formula_prop_and_lemma, 
int_formula_prop_less_lemma, 
int_term_value_var_lemma, 
int_term_value_constant_lemma, 
int_formula_prop_le_lemma, 
int_formula_prop_wf, 
int_seg_wf, 
rleq_wf, 
real-vec-norm_wf, 
istype-top, 
real_wf, 
int-to-real_wf, 
rsum-empty, 
rsqrt_wf, 
rleq_weakening_equal, 
sq_stable__rleq, 
rleq_functionality, 
rsqrt0, 
req_weakening
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation_alt, 
introduction, 
cut, 
independent_pairFormation, 
lambdaEquality_alt, 
isect_memberEquality_alt, 
voidElimination, 
extract_by_obid, 
hypothesis, 
universeIsType, 
sqequalHypSubstitution, 
isectElimination, 
thin, 
dependent_set_memberEquality_alt, 
natural_numberEquality, 
sqequalRule, 
lambdaFormation_alt, 
hypothesisEquality, 
setElimination, 
rename, 
functionExtensionality, 
productElimination, 
independent_isectElimination, 
approximateComputation, 
independent_functionElimination, 
dependent_pairFormation_alt, 
int_eqEquality, 
dependent_functionElimination, 
because_Cache, 
independent_pairEquality, 
axiomEquality, 
applyEquality, 
setIsType, 
minusEquality, 
imageMemberEquality, 
baseClosed, 
imageElimination
Latex:
\mforall{}[r:\{r:\mBbbR{}|  r0  \mleq{}  r\}  ].  B(0;r)  \mequiv{}  Top
Date html generated:
2019_10_30-AM-10_14_49
Last ObjectModification:
2019_06_28-PM-01_52_09
Theory : real!vectors
Home
Index