Nuprl Lemma : accelerate-rational-approx

[k:ℕ+]. ∀[x:ℝ]. ∀[a:ℕ+ ⟶ ℤ].  ((∀n:ℕ+(|x (r(a n)/r(2 n))| ≤ (r(k)/r(n))))  (accelerate(k;a) ∈ {y:ℝx} ))


Proof




Definitions occuring in Statement :  rdiv: (x/y) rleq: x ≤ y rabs: |x| rsub: y req: y int-to-real: r(n) accelerate: accelerate(k;f) real: nat_plus: + uall: [x:A]. B[x] all: x:A. B[x] implies:  Q member: t ∈ T set: {x:A| B[x]}  apply: a function: x:A ⟶ B[x] multiply: m natural_number: $n int:
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T implies:  Q guard: {T} and: P ∧ Q nat_plus: + prop: all: x:A. B[x] uimplies: supposing a rneq: x ≠ y or: P ∨ Q iff: ⇐⇒ Q rev_implies:  Q decidable: Dec(P) not: ¬A satisfiable_int_formula: satisfiable_int_formula(fmla) exists: x:A. B[x] false: False top: Top
Lemmas referenced :  rational-approx-implies-req accelerate_wf regular-int-seq_wf req_wf rleq_wf rabs_wf rsub_wf rdiv_wf int-to-real_wf rless-int nat_plus_properties decidable__lt full-omega-unsat intformand_wf intformnot_wf intformless_wf itermConstant_wf itermMultiply_wf itermVar_wf istype-int int_formula_prop_and_lemma istype-void int_formula_prop_not_lemma int_formula_prop_less_lemma int_term_value_constant_lemma int_term_value_mul_lemma int_term_value_var_lemma int_formula_prop_wf rless_wf real_wf nat_plus_wf
Rules used in proof :  cut introduction extract_by_obid sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation_alt hypothesis sqequalHypSubstitution isectElimination thin hypothesisEquality lambdaFormation_alt independent_functionElimination productElimination dependent_set_memberEquality_alt universeIsType setElimination rename sqequalRule functionIsType inhabitedIsType applyEquality multiplyEquality closedConclusion natural_numberEquality because_Cache independent_isectElimination inrFormation_alt dependent_functionElimination unionElimination approximateComputation dependent_pairFormation_alt lambdaEquality_alt int_eqEquality isect_memberEquality_alt voidElimination independent_pairFormation

Latex:
\mforall{}[k:\mBbbN{}\msupplus{}].  \mforall{}[x:\mBbbR{}].  \mforall{}[a:\mBbbN{}\msupplus{}  {}\mrightarrow{}  \mBbbZ{}].
    ((\mforall{}n:\mBbbN{}\msupplus{}.  (|x  -  (r(a  n)/r(2  *  n))|  \mleq{}  (r(k)/r(n))))  {}\mRightarrow{}  (accelerate(k;a)  \mmember{}  \{y:\mBbbR{}|  y  =  x\}  ))



Date html generated: 2019_10_29-AM-10_21_35
Last ObjectModification: 2019_02_02-AM-10_27_28

Theory : reals


Home Index