Nuprl Lemma : accelerate-rational-approx
∀[k:ℕ+]. ∀[x:ℝ]. ∀[a:ℕ+ ⟶ ℤ].  ((∀n:ℕ+. (|x - (r(a n)/r(2 * n))| ≤ (r(k)/r(n)))) ⇒ (accelerate(k;a) ∈ {y:ℝ| y = x} ))
Proof
Definitions occuring in Statement : 
rdiv: (x/y), 
rleq: x ≤ y, 
rabs: |x|, 
rsub: x - y, 
req: x = y, 
int-to-real: r(n), 
accelerate: accelerate(k;f), 
real: ℝ, 
nat_plus: ℕ+, 
uall: ∀[x:A]. B[x], 
all: ∀x:A. B[x], 
implies: P ⇒ Q, 
member: t ∈ T, 
set: {x:A| B[x]} , 
apply: f a, 
function: x:A ⟶ B[x], 
multiply: n * m, 
natural_number: $n, 
int: ℤ
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x], 
member: t ∈ T, 
implies: P ⇒ Q, 
guard: {T}, 
and: P ∧ Q, 
nat_plus: ℕ+, 
prop: ℙ, 
all: ∀x:A. B[x], 
uimplies: b supposing a, 
rneq: x ≠ y, 
or: P ∨ Q, 
iff: P ⇐⇒ Q, 
rev_implies: P ⇐ Q, 
decidable: Dec(P), 
not: ¬A, 
satisfiable_int_formula: satisfiable_int_formula(fmla), 
exists: ∃x:A. B[x], 
false: False, 
top: Top
Lemmas referenced : 
rational-approx-implies-req, 
accelerate_wf, 
regular-int-seq_wf, 
req_wf, 
rleq_wf, 
rabs_wf, 
rsub_wf, 
rdiv_wf, 
int-to-real_wf, 
rless-int, 
nat_plus_properties, 
decidable__lt, 
full-omega-unsat, 
intformand_wf, 
intformnot_wf, 
intformless_wf, 
itermConstant_wf, 
itermMultiply_wf, 
itermVar_wf, 
istype-int, 
int_formula_prop_and_lemma, 
istype-void, 
int_formula_prop_not_lemma, 
int_formula_prop_less_lemma, 
int_term_value_constant_lemma, 
int_term_value_mul_lemma, 
int_term_value_var_lemma, 
int_formula_prop_wf, 
rless_wf, 
real_wf, 
nat_plus_wf
Rules used in proof : 
cut, 
introduction, 
extract_by_obid, 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation_alt, 
hypothesis, 
sqequalHypSubstitution, 
isectElimination, 
thin, 
hypothesisEquality, 
lambdaFormation_alt, 
independent_functionElimination, 
productElimination, 
dependent_set_memberEquality_alt, 
universeIsType, 
setElimination, 
rename, 
sqequalRule, 
functionIsType, 
inhabitedIsType, 
applyEquality, 
multiplyEquality, 
closedConclusion, 
natural_numberEquality, 
because_Cache, 
independent_isectElimination, 
inrFormation_alt, 
dependent_functionElimination, 
unionElimination, 
approximateComputation, 
dependent_pairFormation_alt, 
lambdaEquality_alt, 
int_eqEquality, 
isect_memberEquality_alt, 
voidElimination, 
independent_pairFormation
Latex:
\mforall{}[k:\mBbbN{}\msupplus{}].  \mforall{}[x:\mBbbR{}].  \mforall{}[a:\mBbbN{}\msupplus{}  {}\mrightarrow{}  \mBbbZ{}].
    ((\mforall{}n:\mBbbN{}\msupplus{}.  (|x  -  (r(a  n)/r(2  *  n))|  \mleq{}  (r(k)/r(n))))  {}\mRightarrow{}  (accelerate(k;a)  \mmember{}  \{y:\mBbbR{}|  y  =  x\}  ))
Date html generated:
2019_10_29-AM-10_21_35
Last ObjectModification:
2019_02_02-AM-10_27_28
Theory : reals
Home
Index