Nuprl Lemma : another-test-ring-req

a,b,c,d,e,x:ℝ.  (b ≠ r0  d ≠ r0  x ≠ r0  (((a/b) (c/d) (b e/x)) ((a c/d) e/x)))


Proof




Definitions occuring in Statement :  rdiv: (x/y) rneq: x ≠ y req: y rmul: b int-to-real: r(n) real: all: x:A. B[x] implies:  Q natural_number: $n
Definitions unfolded in proof :  all: x:A. B[x] implies:  Q member: t ∈ T prop: uall: [x:A]. B[x] uimplies: supposing a rdiv: (x/y) itermConstant: "const" req_int_terms: t1 ≡ t2 false: False not: ¬A top: Top uiff: uiff(P;Q) and: P ∧ Q rev_uimplies: rev_uimplies(P;Q)
Lemmas referenced :  rneq_wf int-to-real_wf real_wf req_wf rmul_wf rinv_wf2 rdiv_wf req_weakening uiff_transitivity req_functionality req_transitivity real_term_polynomial itermSubtract_wf itermMultiply_wf itermVar_wf real_term_value_const_lemma real_term_value_sub_lemma real_term_value_mul_lemma real_term_value_var_lemma req-iff-rsub-is-0 rmul_functionality rmul-rinv3 rinv-mul-as-rdiv
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity lambdaFormation cut introduction extract_by_obid sqequalHypSubstitution isectElimination thin hypothesisEquality natural_numberEquality hypothesis independent_functionElimination independent_isectElimination because_Cache sqequalRule dependent_functionElimination computeAll lambdaEquality int_eqEquality intEquality isect_memberEquality voidElimination voidEquality productElimination

Latex:
\mforall{}a,b,c,d,e,x:\mBbbR{}.    (b  \mneq{}  r0  {}\mRightarrow{}  d  \mneq{}  r0  {}\mRightarrow{}  x  \mneq{}  r0  {}\mRightarrow{}  (((a/b)  *  (c/d)  *  (b  *  e/x))  =  ((a  *  c/d)  *  e/x)))



Date html generated: 2017_10_03-AM-08_34_52
Last ObjectModification: 2017_07_28-AM-07_28_39

Theory : reals


Home Index