Nuprl Lemma : another-test-ring-req
∀a,b,c,d,e,x:ℝ.  (b ≠ r0 ⇒ d ≠ r0 ⇒ x ≠ r0 ⇒ (((a/b) * (c/d) * (b * e/x)) = ((a * c/d) * e/x)))
Proof
Definitions occuring in Statement : 
rdiv: (x/y), 
rneq: x ≠ y, 
req: x = y, 
rmul: a * b, 
int-to-real: r(n), 
real: ℝ, 
all: ∀x:A. B[x], 
implies: P ⇒ Q, 
natural_number: $n
Definitions unfolded in proof : 
all: ∀x:A. B[x], 
implies: P ⇒ Q, 
member: t ∈ T, 
prop: ℙ, 
uall: ∀[x:A]. B[x], 
uimplies: b supposing a, 
rdiv: (x/y), 
itermConstant: "const", 
req_int_terms: t1 ≡ t2, 
false: False, 
not: ¬A, 
top: Top, 
uiff: uiff(P;Q), 
and: P ∧ Q, 
rev_uimplies: rev_uimplies(P;Q)
Lemmas referenced : 
rneq_wf, 
int-to-real_wf, 
real_wf, 
req_wf, 
rmul_wf, 
rinv_wf2, 
rdiv_wf, 
req_weakening, 
uiff_transitivity, 
req_functionality, 
req_transitivity, 
real_term_polynomial, 
itermSubtract_wf, 
itermMultiply_wf, 
itermVar_wf, 
real_term_value_const_lemma, 
real_term_value_sub_lemma, 
real_term_value_mul_lemma, 
real_term_value_var_lemma, 
req-iff-rsub-is-0, 
rmul_functionality, 
rmul-rinv3, 
rinv-mul-as-rdiv
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
lambdaFormation, 
cut, 
introduction, 
extract_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
thin, 
hypothesisEquality, 
natural_numberEquality, 
hypothesis, 
independent_functionElimination, 
independent_isectElimination, 
because_Cache, 
sqequalRule, 
dependent_functionElimination, 
computeAll, 
lambdaEquality, 
int_eqEquality, 
intEquality, 
isect_memberEquality, 
voidElimination, 
voidEquality, 
productElimination
Latex:
\mforall{}a,b,c,d,e,x:\mBbbR{}.    (b  \mneq{}  r0  {}\mRightarrow{}  d  \mneq{}  r0  {}\mRightarrow{}  x  \mneq{}  r0  {}\mRightarrow{}  (((a/b)  *  (c/d)  *  (b  *  e/x))  =  ((a  *  c/d)  *  e/x)))
 Date html generated: 
2017_10_03-AM-08_34_52
 Last ObjectModification: 
2017_07_28-AM-07_28_39
Theory : reals
Home
Index