Nuprl Lemma : derivative-add-const
∀[I:Interval]. ∀[C:ℝ]. ∀[f,g:I ⟶ℝ].  (d(f[x])/dx = λx.g[x] on I ⇒ d(C + f[x])/dx = λx.g[x] on I)
Proof
Definitions occuring in Statement : 
derivative: d(f[x])/dx = λz.g[z] on I, 
rfun: I ⟶ℝ, 
interval: Interval, 
radd: a + b, 
real: ℝ, 
uall: ∀[x:A]. B[x], 
so_apply: x[s], 
implies: P ⇒ Q
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x], 
implies: P ⇒ Q, 
member: t ∈ T, 
prop: ℙ, 
so_lambda: λ2x.t[x], 
label: ...$L... t, 
rfun: I ⟶ℝ, 
so_apply: x[s], 
subtype_rel: A ⊆r B, 
uimplies: b supposing a, 
top: Top, 
all: ∀x:A. B[x], 
and: P ∧ Q, 
rfun-eq: rfun-eq(I;f;g), 
r-ap: f(x)
Lemmas referenced : 
derivative_wf, 
i-member_wf, 
real_wf, 
rfun_wf, 
interval_wf, 
top_wf, 
subtype_rel_dep_function, 
subtype_rel_self, 
set_wf, 
int-to-real_wf, 
radd_wf, 
req_weakening, 
radd-zero-both, 
derivative-add, 
derivative-const, 
derivative_functionality
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation, 
lambdaFormation, 
cut, 
introduction, 
extract_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
thin, 
hypothesisEquality, 
sqequalRule, 
lambdaEquality, 
applyEquality, 
setElimination, 
rename, 
dependent_set_memberEquality, 
hypothesis, 
setEquality, 
because_Cache, 
independent_isectElimination, 
isect_memberEquality, 
voidElimination, 
voidEquality, 
natural_numberEquality, 
productElimination, 
independent_functionElimination
Latex:
\mforall{}[I:Interval].  \mforall{}[C:\mBbbR{}].  \mforall{}[f,g:I  {}\mrightarrow{}\mBbbR{}].    (d(f[x])/dx  =  \mlambda{}x.g[x]  on  I  {}\mRightarrow{}  d(C  +  f[x])/dx  =  \mlambda{}x.g[x]  on  I)
Date html generated:
2018_05_22-PM-02_46_01
Last ObjectModification:
2017_10_23-AM-00_50_15
Theory : reals
Home
Index