Nuprl Lemma : derivative-rdiv-const-alt
∀a:ℝ. (a ≠ r0 ⇒ (∀I:Interval. ∀f,f':I ⟶ℝ.  (d(f[x])/dx = λx.a * f'[x] on I ⇒ d((f[x]/a))/dx = λx.f'[x] on I)))
Proof
Definitions occuring in Statement : 
derivative: d(f[x])/dx = λz.g[z] on I, 
rfun: I ⟶ℝ, 
interval: Interval, 
rdiv: (x/y), 
rneq: x ≠ y, 
rmul: a * b, 
int-to-real: r(n), 
real: ℝ, 
so_apply: x[s], 
all: ∀x:A. B[x], 
implies: P ⇒ Q, 
natural_number: $n
Definitions unfolded in proof : 
all: ∀x:A. B[x], 
member: t ∈ T, 
implies: P ⇒ Q, 
uall: ∀[x:A]. B[x], 
so_lambda: λ2x.t[x], 
label: ...$L... t, 
rfun: I ⟶ℝ, 
so_apply: x[s], 
prop: ℙ, 
uimplies: b supposing a, 
false: False, 
not: ¬A, 
rat_term_to_real: rat_term_to_real(f;t), 
rtermVar: rtermVar(var), 
rat_term_ind: rat_term_ind, 
pi1: fst(t), 
true: True, 
rtermDivide: num "/" denom, 
rtermMultiply: left "*" right, 
and: P ∧ Q, 
pi2: snd(t), 
rfun-eq: rfun-eq(I;f;g), 
r-ap: f(x)
Lemmas referenced : 
derivative-rdiv-const, 
derivative_wf, 
i-member_wf, 
rmul_wf, 
rfun_wf, 
interval_wf, 
rneq_wf, 
int-to-real_wf, 
real_wf, 
rdiv_wf, 
req_weakening, 
assert-rat-term-eq2, 
rtermDivide_wf, 
rtermMultiply_wf, 
rtermVar_wf, 
istype-int, 
derivative_functionality
Rules used in proof : 
cut, 
introduction, 
extract_by_obid, 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
lambdaFormation_alt, 
hypothesis, 
sqequalHypSubstitution, 
dependent_functionElimination, 
thin, 
hypothesisEquality, 
independent_functionElimination, 
universeIsType, 
isectElimination, 
sqequalRule, 
lambdaEquality_alt, 
applyEquality, 
setIsType, 
inhabitedIsType, 
because_Cache, 
natural_numberEquality, 
independent_isectElimination, 
int_eqEquality, 
approximateComputation, 
independent_pairFormation
Latex:
\mforall{}a:\mBbbR{}
    (a  \mneq{}  r0
    {}\mRightarrow{}  (\mforall{}I:Interval.  \mforall{}f,f':I  {}\mrightarrow{}\mBbbR{}.
                (d(f[x])/dx  =  \mlambda{}x.a  *  f'[x]  on  I  {}\mRightarrow{}  d((f[x]/a))/dx  =  \mlambda{}x.f'[x]  on  I)))
Date html generated:
2019_10_30-AM-09_05_33
Last ObjectModification:
2019_04_02-AM-09_45_32
Theory : reals
Home
Index