Nuprl Lemma : int-rsub_wf

[k:ℤ]. ∀[x:ℝ].  (k x ∈ ℝ)


Proof




Definitions occuring in Statement :  int-rsub: x real: uall: [x:A]. B[x] member: t ∈ T int:
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T int-rsub: x real: nat_plus: + prop: regular-int-seq: k-regular-seq(f) all: x:A. B[x] top: Top squash: T true: True subtype_rel: A ⊆B uimplies: supposing a guard: {T} iff: ⇐⇒ Q and: P ∧ Q rev_implies:  Q implies:  Q subtract: m
Lemmas referenced :  subtract_wf nat_plus_wf regular-int-seq_wf real_wf istype-int istype-void le_wf squash_wf true_wf absval_sym subtype_rel_self iff_weakening_equal minus-add minus-one-mul mul-associates one-mul mul-distributes add-associates mul-swap mul-commutes add-swap mul-distributes-right add-commutes zero-mul zero-add
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation_alt introduction cut sqequalRule sqequalHypSubstitution setElimination thin rename dependent_set_memberEquality_alt lambdaEquality_alt extract_by_obid isectElimination multiplyEquality natural_numberEquality hypothesisEquality hypothesis applyEquality universeIsType axiomEquality equalityTransitivity equalitySymmetry isect_memberEquality_alt isectIsTypeImplies inhabitedIsType lambdaFormation_alt dependent_functionElimination because_Cache voidElimination minusEquality addEquality imageElimination imageMemberEquality baseClosed instantiate universeEquality independent_isectElimination productElimination independent_functionElimination

Latex:
\mforall{}[k:\mBbbZ{}].  \mforall{}[x:\mBbbR{}].    (k  -  x  \mmember{}  \mBbbR{})



Date html generated: 2019_10_29-AM-09_32_00
Last ObjectModification: 2019_02_13-PM-01_06_19

Theory : reals


Home Index