Nuprl Lemma : int-rsub_wf
∀[k:ℤ]. ∀[x:ℝ].  (k - x ∈ ℝ)
Proof
Definitions occuring in Statement : 
int-rsub: k - x
, 
real: ℝ
, 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
int: ℤ
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
int-rsub: k - x
, 
real: ℝ
, 
nat_plus: ℕ+
, 
prop: ℙ
, 
regular-int-seq: k-regular-seq(f)
, 
all: ∀x:A. B[x]
, 
top: Top
, 
squash: ↓T
, 
true: True
, 
subtype_rel: A ⊆r B
, 
uimplies: b supposing a
, 
guard: {T}
, 
iff: P 
⇐⇒ Q
, 
and: P ∧ Q
, 
rev_implies: P 
⇐ Q
, 
implies: P 
⇒ Q
, 
subtract: n - m
Lemmas referenced : 
subtract_wf, 
nat_plus_wf, 
regular-int-seq_wf, 
real_wf, 
istype-int, 
istype-void, 
le_wf, 
squash_wf, 
true_wf, 
absval_sym, 
subtype_rel_self, 
iff_weakening_equal, 
minus-add, 
minus-one-mul, 
mul-associates, 
one-mul, 
mul-distributes, 
add-associates, 
mul-swap, 
mul-commutes, 
add-swap, 
mul-distributes-right, 
add-commutes, 
zero-mul, 
zero-add
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation_alt, 
introduction, 
cut, 
sqequalRule, 
sqequalHypSubstitution, 
setElimination, 
thin, 
rename, 
dependent_set_memberEquality_alt, 
lambdaEquality_alt, 
extract_by_obid, 
isectElimination, 
multiplyEquality, 
natural_numberEquality, 
hypothesisEquality, 
hypothesis, 
applyEquality, 
universeIsType, 
axiomEquality, 
equalityTransitivity, 
equalitySymmetry, 
isect_memberEquality_alt, 
isectIsTypeImplies, 
inhabitedIsType, 
lambdaFormation_alt, 
dependent_functionElimination, 
because_Cache, 
voidElimination, 
minusEquality, 
addEquality, 
imageElimination, 
imageMemberEquality, 
baseClosed, 
instantiate, 
universeEquality, 
independent_isectElimination, 
productElimination, 
independent_functionElimination
Latex:
\mforall{}[k:\mBbbZ{}].  \mforall{}[x:\mBbbR{}].    (k  -  x  \mmember{}  \mBbbR{})
Date html generated:
2019_10_29-AM-09_32_00
Last ObjectModification:
2019_02_13-PM-01_06_19
Theory : reals
Home
Index