Nuprl Lemma : proper-real-continuity_wf

proper-real-continuity() ∈ ℙ


Proof




Definitions occuring in Statement :  proper-real-continuity: proper-real-continuity() prop: member: t ∈ T
Definitions unfolded in proof :  so_apply: x[s] not: ¬A false: False exists: x:A. B[x] satisfiable_int_formula: satisfiable_int_formula(fmla) decidable: Dec(P) sq_exists: x:{A| B[x]} rless: x < y rev_implies:  Q iff: ⇐⇒ Q or: P ∨ Q guard: {T} rneq: x ≠ y uimplies: supposing a nat_plus: + rfun: I ⟶ℝ and: P ∧ Q prop: implies:  Q so_lambda: λ2x.t[x] uall: [x:A]. B[x] top: Top member: t ∈ T all: x:A. B[x] proper-real-continuity: proper-real-continuity()
Lemmas referenced :  member_rccint_lemma all_wf real_wf rless_wf rfun_wf rccint_wf nat_plus_wf sq_exists_wf int-to-real_wf rleq_wf rabs_wf rsub_wf and_wf rdiv_wf rless-int nat_plus_properties decidable__lt satisfiable-full-omega-tt intformand_wf intformnot_wf intformless_wf itermConstant_wf itermVar_wf int_formula_prop_and_lemma int_formula_prop_not_lemma int_formula_prop_less_lemma int_term_value_constant_lemma int_term_value_var_lemma int_formula_prop_wf
Rules used in proof :  computeAll independent_pairFormation intEquality int_eqEquality dependent_pairFormation unionElimination independent_functionElimination inrFormation productElimination independent_isectElimination rename setElimination dependent_set_memberEquality applyEquality natural_numberEquality productEquality because_Cache hypothesisEquality functionEquality lambdaEquality isectElimination hypothesis voidEquality voidElimination isect_memberEquality thin dependent_functionElimination sqequalHypSubstitution lemma_by_obid cut computationStep sqequalTransitivity sqequalReflexivity sqequalRule sqequalSubstitution

Latex:
proper-real-continuity()  \mmember{}  \mBbbP{}



Date html generated: 2016_05_18-AM-10_52_28
Last ObjectModification: 2016_01_17-AM-00_13_39

Theory : reals


Home Index