Nuprl Lemma : proper-real-continuity_wf
proper-real-continuity() ∈ ℙ
Proof
Definitions occuring in Statement : 
proper-real-continuity: proper-real-continuity(), 
prop: ℙ, 
member: t ∈ T
Definitions unfolded in proof : 
so_apply: x[s], 
not: ¬A, 
false: False, 
exists: ∃x:A. B[x], 
satisfiable_int_formula: satisfiable_int_formula(fmla), 
decidable: Dec(P), 
sq_exists: ∃x:{A| B[x]}, 
rless: x < y, 
rev_implies: P ⇐ Q, 
iff: P ⇐⇒ Q, 
or: P ∨ Q, 
guard: {T}, 
rneq: x ≠ y, 
uimplies: b supposing a, 
nat_plus: ℕ+, 
rfun: I ⟶ℝ, 
and: P ∧ Q, 
prop: ℙ, 
implies: P ⇒ Q, 
so_lambda: λ2x.t[x], 
uall: ∀[x:A]. B[x], 
top: Top, 
member: t ∈ T, 
all: ∀x:A. B[x], 
proper-real-continuity: proper-real-continuity()
Lemmas referenced : 
member_rccint_lemma, 
all_wf, 
real_wf, 
rless_wf, 
rfun_wf, 
rccint_wf, 
nat_plus_wf, 
sq_exists_wf, 
int-to-real_wf, 
rleq_wf, 
rabs_wf, 
rsub_wf, 
and_wf, 
rdiv_wf, 
rless-int, 
nat_plus_properties, 
decidable__lt, 
satisfiable-full-omega-tt, 
intformand_wf, 
intformnot_wf, 
intformless_wf, 
itermConstant_wf, 
itermVar_wf, 
int_formula_prop_and_lemma, 
int_formula_prop_not_lemma, 
int_formula_prop_less_lemma, 
int_term_value_constant_lemma, 
int_term_value_var_lemma, 
int_formula_prop_wf
Rules used in proof : 
computeAll, 
independent_pairFormation, 
intEquality, 
int_eqEquality, 
dependent_pairFormation, 
unionElimination, 
independent_functionElimination, 
inrFormation, 
productElimination, 
independent_isectElimination, 
rename, 
setElimination, 
dependent_set_memberEquality, 
applyEquality, 
natural_numberEquality, 
productEquality, 
because_Cache, 
hypothesisEquality, 
functionEquality, 
lambdaEquality, 
isectElimination, 
hypothesis, 
voidEquality, 
voidElimination, 
isect_memberEquality, 
thin, 
dependent_functionElimination, 
sqequalHypSubstitution, 
lemma_by_obid, 
cut, 
computationStep, 
sqequalTransitivity, 
sqequalReflexivity, 
sqequalRule, 
sqequalSubstitution
Latex:
proper-real-continuity()  \mmember{}  \mBbbP{}
Date html generated:
2016_05_18-AM-10_52_28
Last ObjectModification:
2016_01_17-AM-00_13_39
Theory : reals
Home
Index