Nuprl Lemma : rabs-diff-rdiv

[a,b,c,d,x,y:ℝ].
  (c ≠ r0  d ≠ r0  (|a b| ≤ x)  (|(r1/c) (r1/d)| ≤ y)  (|(a/c) (b/d)| ≤ ((|a| y) (|(r1/d)| x))))


Proof




Definitions occuring in Statement :  rdiv: (x/y) rneq: x ≠ y rleq: x ≤ y rabs: |x| rsub: y rmul: b radd: b int-to-real: r(n) real: uall: [x:A]. B[x] implies:  Q natural_number: $n
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T implies:  Q uimplies: supposing a prop: rleq: x ≤ y rnonneg: rnonneg(x) all: x:A. B[x] le: A ≤ B and: P ∧ Q rev_uimplies: rev_uimplies(P;Q) rge: x ≥ y guard: {T} rdiv: (x/y) uiff: uiff(P;Q) req_int_terms: t1 ≡ t2 false: False not: ¬A top: Top
Lemmas referenced :  rabs-diff-rmul rdiv_wf int-to-real_wf rleq_wf rabs_wf rsub_wf rneq_wf le_witness_for_triv real_wf rmul_wf radd_wf rminus_wf rinv_wf2 itermSubtract_wf itermMultiply_wf itermVar_wf itermAdd_wf itermMinus_wf itermConstant_wf rleq_weakening_equal rleq_functionality_wrt_implies rleq_functionality req_transitivity rabs_functionality radd_functionality rminus-rdiv req_weakening req-iff-rsub-is-0 real_polynomial_null istype-int real_term_value_sub_lemma istype-void real_term_value_mul_lemma real_term_value_var_lemma real_term_value_add_lemma real_term_value_minus_lemma real_term_value_const_lemma
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation_alt introduction cut lambdaFormation_alt extract_by_obid sqequalHypSubstitution isectElimination thin hypothesisEquality natural_numberEquality hypothesis independent_isectElimination independent_functionElimination universeIsType sqequalRule lambdaEquality_alt dependent_functionElimination productElimination equalityTransitivity equalitySymmetry functionIsTypeImplies inhabitedIsType isect_memberEquality_alt isectIsTypeImplies because_Cache approximateComputation int_eqEquality voidElimination

Latex:
\mforall{}[a,b,c,d,x,y:\mBbbR{}].
    (c  \mneq{}  r0
    {}\mRightarrow{}  d  \mneq{}  r0
    {}\mRightarrow{}  (|a  -  b|  \mleq{}  x)
    {}\mRightarrow{}  (|(r1/c)  -  (r1/d)|  \mleq{}  y)
    {}\mRightarrow{}  (|(a/c)  -  (b/d)|  \mleq{}  ((|a|  *  y)  +  (|(r1/d)|  *  x))))



Date html generated: 2019_10_29-AM-10_21_50
Last ObjectModification: 2019_07_05-PM-00_18_35

Theory : reals


Home Index