Nuprl Lemma : rabs-diff-rmul

[a,b,c,d,x,y:ℝ].  ((|a b| ≤ x)  (|c d| ≤ y)  (|(a c) d| ≤ ((|a| y) (|d| x))))


Proof




Definitions occuring in Statement :  rleq: x ≤ y rabs: |x| rsub: y rmul: b radd: b real: uall: [x:A]. B[x] implies:  Q
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T implies:  Q prop: rleq: x ≤ y rnonneg: rnonneg(x) all: x:A. B[x] le: A ≤ B and: P ∧ Q not: ¬A false: False subtype_rel: A ⊆B real: uiff: uiff(P;Q) uimplies: supposing a req_int_terms: t1 ≡ t2 top: Top rev_uimplies: rev_uimplies(P;Q) rge: x ≥ y guard: {T}
Lemmas referenced :  rleq_wf rabs_wf rsub_wf less_than'_wf radd_wf rmul_wf real_wf nat_plus_wf itermSubtract_wf itermMultiply_wf itermVar_wf itermAdd_wf req-iff-rsub-is-0 real_polynomial_null int-to-real_wf real_term_value_sub_lemma real_term_value_mul_lemma real_term_value_var_lemma real_term_value_add_lemma real_term_value_const_lemma uimplies_transitivity rleq_functionality radd_functionality rabs-rmul req_weakening rleq_functionality_wrt_implies r-triangle-inequality rleq_weakening_equal rabs_functionality rmul_preserves_rleq2 zero-rleq-rabs rminus_wf itermMinus_wf rmul_comm rmul_functionality real_term_value_minus_lemma rleq_weakening req_transitivity radd_functionality_wrt_rleq
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation introduction cut lambdaFormation extract_by_obid sqequalHypSubstitution isectElimination thin hypothesisEquality hypothesis sqequalRule lambdaEquality dependent_functionElimination productElimination independent_pairEquality because_Cache applyEquality setElimination rename minusEquality natural_numberEquality axiomEquality equalityTransitivity equalitySymmetry isect_memberEquality voidElimination independent_isectElimination approximateComputation int_eqEquality intEquality voidEquality independent_functionElimination promote_hyp

Latex:
\mforall{}[a,b,c,d,x,y:\mBbbR{}].    ((|a  -  b|  \mleq{}  x)  {}\mRightarrow{}  (|c  -  d|  \mleq{}  y)  {}\mRightarrow{}  (|(a  *  c)  -  b  *  d|  \mleq{}  ((|a|  *  y)  +  (|d|  *  x))))



Date html generated: 2018_05_22-PM-01_59_47
Last ObjectModification: 2017_10_25-AM-11_07_31

Theory : reals


Home Index