Nuprl Lemma : ravg_comm

[x,y:ℝ].  (ravg(x;y) ravg(y;x))


Proof




Definitions occuring in Statement :  ravg: ravg(x;y) req: y real: uall: [x:A]. B[x]
Definitions unfolded in proof :  top: Top not: ¬A false: False req_int_terms: t1 ≡ t2 rdiv: (x/y) true: True less_than': less_than'(a;b) squash: T less_than: a < b rev_uimplies: rev_uimplies(P;Q) uiff: uiff(P;Q) prop: implies:  Q rev_implies:  Q and: P ∧ Q iff: ⇐⇒ Q all: x:A. B[x] or: P ∨ Q guard: {T} rneq: x ≠ y uimplies: supposing a ravg: ravg(x;y) member: t ∈ T uall: [x:A]. B[x]
Lemmas referenced :  real_term_value_const_lemma real_term_value_var_lemma real_term_value_add_lemma real_term_value_mul_lemma real_term_value_sub_lemma real_polynomial_null rmul-rinv3 radd_functionality req_transitivity req_functionality req_weakening req-iff-rsub-is-0 itermConstant_wf itermVar_wf itermAdd_wf itermMultiply_wf itermSubtract_wf rinv_wf2 rless_wf int-to-real_wf radd_wf rmul_wf real_wf ravg_wf req_witness rless-int rdiv_wf rmul_preserves_req
Rules used in proof :  voidEquality voidElimination intEquality int_eqEquality lambdaEquality approximateComputation baseClosed imageMemberEquality independent_pairFormation natural_numberEquality isect_memberEquality hypothesisEquality independent_functionElimination productElimination dependent_functionElimination inrFormation hypothesis sqequalRule independent_isectElimination because_Cache thin isectElimination sqequalHypSubstitution extract_by_obid cut introduction isect_memberFormation sqequalReflexivity computationStep sqequalTransitivity sqequalSubstitution

Latex:
\mforall{}[x,y:\mBbbR{}].    (ravg(x;y)  =  ravg(y;x))



Date html generated: 2017_10_03-AM-08_41_44
Last ObjectModification: 2017_07_31-AM-10_31_17

Theory : reals


Home Index