Nuprl Lemma : real-vec-sum-single

[n,m:ℤ]. ∀[k:ℕ]. ∀[x:{n..m 1-} ⟶ ℝ^k].  req-vec(k;Σ{x[k] n≤k≤m};x[n]) supposing n ∈ ℤ


Proof




Definitions occuring in Statement :  real-vec-sum: Σ{x[k] n≤k≤m} req-vec: req-vec(n;x;y) real-vec: ^n int_seg: {i..j-} nat: uimplies: supposing a uall: [x:A]. B[x] so_apply: x[s] function: x:A ⟶ B[x] add: m natural_number: $n int: equal: t ∈ T
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T uimplies: supposing a sq_type: SQType(T) all: x:A. B[x] implies:  Q guard: {T} req-vec: req-vec(n;x;y) real-vec-sum: Σ{x[k] n≤k≤m} nat: so_lambda: λ2x.t[x] so_apply: x[s] subtype_rel: A ⊆B real-vec: ^n int_seg: {i..j-} lelt: i ≤ j < k and: P ∧ Q le: A ≤ B less_than: a < b squash: T ge: i ≥  decidable: Dec(P) or: P ∨ Q not: ¬A satisfiable_int_formula: satisfiable_int_formula(fmla) exists: x:A. B[x] false: False top: Top prop: uiff: uiff(P;Q) rev_uimplies: rev_uimplies(P;Q)
Lemmas referenced :  subtype_base_sq int_subtype_base int_seg_wf req_witness real-vec-sum_wf subtype_rel_self real_wf int_seg_properties nat_properties decidable__le full-omega-unsat intformnot_wf intformle_wf itermVar_wf istype-int int_formula_prop_not_lemma istype-void int_formula_prop_le_lemma int_term_value_var_lemma int_formula_prop_wf decidable__lt intformand_wf intformless_wf itermAdd_wf itermConstant_wf intformeq_wf int_formula_prop_and_lemma int_formula_prop_less_lemma int_term_value_add_lemma int_term_value_constant_lemma int_formula_prop_eq_lemma istype-le istype-less_than real-vec_wf istype-nat rsum_wf req_weakening req_functionality rsum-single
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation_alt introduction cut thin instantiate extract_by_obid sqequalHypSubstitution isectElimination cumulativity intEquality independent_isectElimination hypothesis dependent_functionElimination hypothesisEquality independent_functionElimination lambdaFormation_alt sqequalRule universeIsType natural_numberEquality setElimination rename lambdaEquality_alt applyEquality addEquality functionEquality productElimination imageElimination dependent_set_memberEquality_alt independent_pairFormation unionElimination approximateComputation dependent_pairFormation_alt int_eqEquality isect_memberEquality_alt voidElimination productIsType functionIsTypeImplies inhabitedIsType equalityIstype because_Cache isectIsTypeImplies functionIsType setIsType

Latex:
\mforall{}[n,m:\mBbbZ{}].  \mforall{}[k:\mBbbN{}].  \mforall{}[x:\{n..m  +  1\msupminus{}\}  {}\mrightarrow{}  \mBbbR{}\^{}k].    req-vec(k;\mSigma{}\{x[k]  |  n\mleq{}k\mleq{}m\};x[n])  supposing  m  =  n



Date html generated: 2019_10_30-AM-08_01_30
Last ObjectModification: 2019_09_17-PM-05_15_01

Theory : reals


Home Index