Nuprl Lemma : rinv-rminus
∀[x:ℝ]. -(rinv(x)) = rinv(-(x)) supposing x ≠ r0
Proof
Definitions occuring in Statement : 
rneq: x ≠ y, 
rinv: rinv(x), 
req: x = y, 
rminus: -(x), 
int-to-real: r(n), 
real: ℝ, 
uimplies: b supposing a, 
uall: ∀[x:A]. B[x], 
natural_number: $n
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x], 
uimplies: b supposing a, 
member: t ∈ T, 
all: ∀x:A. B[x], 
implies: P ⇒ Q, 
prop: ℙ, 
uiff: uiff(P;Q), 
and: P ∧ Q, 
rev_uimplies: rev_uimplies(P;Q), 
itermConstant: "const", 
req_int_terms: t1 ≡ t2, 
false: False, 
not: ¬A, 
top: Top
Lemmas referenced : 
rmul-inverse-is-rinv, 
rminus_wf, 
rminus-neq-zero, 
rinv_wf2, 
rneq_wf, 
int-to-real_wf, 
real_wf, 
rmul_wf, 
req_functionality, 
rmul_functionality, 
rminus-as-rmul, 
req_weakening, 
req_transitivity, 
real_term_polynomial, 
itermSubtract_wf, 
itermMultiply_wf, 
itermConstant_wf, 
itermVar_wf, 
real_term_value_const_lemma, 
real_term_value_sub_lemma, 
real_term_value_mul_lemma, 
real_term_value_var_lemma, 
req-iff-rsub-is-0, 
rmul-identity1, 
rmul-rinv
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation, 
cut, 
introduction, 
extract_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
thin, 
hypothesisEquality, 
hypothesis, 
independent_isectElimination, 
dependent_functionElimination, 
independent_functionElimination, 
natural_numberEquality, 
minusEquality, 
because_Cache, 
productElimination, 
sqequalRule, 
computeAll, 
lambdaEquality, 
int_eqEquality, 
intEquality, 
isect_memberEquality, 
voidElimination, 
voidEquality
Latex:
\mforall{}[x:\mBbbR{}].  -(rinv(x))  =  rinv(-(x))  supposing  x  \mneq{}  r0
Date html generated:
2017_10_03-AM-08_27_58
Last ObjectModification:
2017_07_28-AM-07_24_56
Theory : reals
Home
Index