Nuprl Lemma : rinv-rminus

[x:ℝ]. -(rinv(x)) rinv(-(x)) supposing x ≠ r0


Proof




Definitions occuring in Statement :  rneq: x ≠ y rinv: rinv(x) req: y rminus: -(x) int-to-real: r(n) real: uimplies: supposing a uall: [x:A]. B[x] natural_number: $n
Definitions unfolded in proof :  uall: [x:A]. B[x] uimplies: supposing a member: t ∈ T all: x:A. B[x] implies:  Q prop: uiff: uiff(P;Q) and: P ∧ Q rev_uimplies: rev_uimplies(P;Q) itermConstant: "const" req_int_terms: t1 ≡ t2 false: False not: ¬A top: Top
Lemmas referenced :  rmul-inverse-is-rinv rminus_wf rminus-neq-zero rinv_wf2 rneq_wf int-to-real_wf real_wf rmul_wf req_functionality rmul_functionality rminus-as-rmul req_weakening req_transitivity real_term_polynomial itermSubtract_wf itermMultiply_wf itermConstant_wf itermVar_wf real_term_value_const_lemma real_term_value_sub_lemma real_term_value_mul_lemma real_term_value_var_lemma req-iff-rsub-is-0 rmul-identity1 rmul-rinv
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation cut introduction extract_by_obid sqequalHypSubstitution isectElimination thin hypothesisEquality hypothesis independent_isectElimination dependent_functionElimination independent_functionElimination natural_numberEquality minusEquality because_Cache productElimination sqequalRule computeAll lambdaEquality int_eqEquality intEquality isect_memberEquality voidElimination voidEquality

Latex:
\mforall{}[x:\mBbbR{}].  -(rinv(x))  =  rinv(-(x))  supposing  x  \mneq{}  r0



Date html generated: 2017_10_03-AM-08_27_58
Last ObjectModification: 2017_07_28-AM-07_24_56

Theory : reals


Home Index