Nuprl Lemma : rpolydiv-rec
∀[n:ℤ]. ∀[a,z:Top].
  ((rpolydiv(n;a;z) (n - 1) ~ a n) ∧ (∀i:ℕn - 1. (rpolydiv(n;a;z) i ~ (a (i + 1)) + (z * (rpolydiv(n;a;z) (i + 1))))))
Proof
Definitions occuring in Statement : 
rpolydiv: rpolydiv(n;a;z)
, 
rmul: a * b
, 
radd: a + b
, 
int_seg: {i..j-}
, 
uall: ∀[x:A]. B[x]
, 
top: Top
, 
all: ∀x:A. B[x]
, 
and: P ∧ Q
, 
apply: f a
, 
subtract: n - m
, 
add: n + m
, 
natural_number: $n
, 
int: ℤ
, 
sqequal: s ~ t
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x]
, 
and: P ∧ Q
, 
rpolydiv: rpolydiv(n;a;z)
, 
member: t ∈ T
, 
uimplies: b supposing a
, 
all: ∀x:A. B[x]
, 
decidable: Dec(P)
, 
or: P ∨ Q
, 
not: ¬A
, 
implies: P 
⇒ Q
, 
satisfiable_int_formula: satisfiable_int_formula(fmla)
, 
exists: ∃x:A. B[x]
, 
false: False
, 
top: Top
, 
prop: ℙ
, 
sq_type: SQType(T)
, 
guard: {T}
, 
int_seg: {i..j-}
, 
exposed-it: exposed-it
, 
bool: 𝔹
, 
unit: Unit
, 
it: ⋅
, 
btrue: tt
, 
uiff: uiff(P;Q)
, 
ifthenelse: if b then t else f fi 
, 
lelt: i ≤ j < k
, 
bfalse: ff
, 
bnot: ¬bb
, 
assert: ↑b
, 
rev_implies: P 
⇐ Q
, 
iff: P 
⇐⇒ Q
Lemmas referenced : 
istype-top, 
istype-int, 
subtype_base_sq, 
int_subtype_base, 
decidable__equal_int, 
full-omega-unsat, 
intformnot_wf, 
intformeq_wf, 
itermSubtract_wf, 
itermVar_wf, 
itermConstant_wf, 
int_formula_prop_not_lemma, 
istype-void, 
int_formula_prop_eq_lemma, 
int_term_value_subtract_lemma, 
int_term_value_var_lemma, 
int_term_value_constant_lemma, 
int_formula_prop_wf, 
primrec0_lemma, 
int_seg_wf, 
subtract_wf, 
primrec-unroll, 
lt_int_wf, 
eqtt_to_assert, 
assert_of_lt_int, 
int_seg_properties, 
intformand_wf, 
intformless_wf, 
int_formula_prop_and_lemma, 
int_formula_prop_less_lemma, 
eqff_to_assert, 
bool_cases_sqequal, 
bool_wf, 
bool_subtype_base, 
assert-bnot, 
iff_weakening_uiff, 
assert_wf, 
less_than_wf, 
istype-less_than, 
itermAdd_wf, 
int_term_value_add_lemma
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation_alt, 
independent_pairFormation, 
because_Cache, 
cut, 
introduction, 
extract_by_obid, 
hypothesis, 
sqequalRule, 
thin, 
instantiate, 
sqequalHypSubstitution, 
isectElimination, 
cumulativity, 
intEquality, 
independent_isectElimination, 
dependent_functionElimination, 
unionElimination, 
natural_numberEquality, 
approximateComputation, 
independent_functionElimination, 
dependent_pairFormation_alt, 
lambdaEquality_alt, 
int_eqEquality, 
hypothesisEquality, 
isect_memberEquality_alt, 
voidElimination, 
universeIsType, 
equalityTransitivity, 
equalitySymmetry, 
lambdaFormation_alt, 
setElimination, 
rename, 
inhabitedIsType, 
equalityElimination, 
productElimination, 
equalityIstype, 
promote_hyp, 
axiomSqEquality
Latex:
\mforall{}[n:\mBbbZ{}].  \mforall{}[a,z:Top].
    ((rpolydiv(n;a;z)  (n  -  1)  \msim{}  a  n)
    \mwedge{}  (\mforall{}i:\mBbbN{}n  -  1.  (rpolydiv(n;a;z)  i  \msim{}  (a  (i  +  1))  +  (z  *  (rpolydiv(n;a;z)  (i  +  1))))))
Date html generated:
2019_10_29-AM-10_15_26
Last ObjectModification:
2019_01_14-PM-07_12_14
Theory : reals
Home
Index