Nuprl Lemma : rpolydiv-rec

[n:ℤ]. ∀[a,z:Top].
  ((rpolydiv(n;a;z) (n 1) n) ∧ (∀i:ℕ1. (rpolydiv(n;a;z) (a (i 1)) (z (rpolydiv(n;a;z) (i 1))))))


Proof




Definitions occuring in Statement :  rpolydiv: rpolydiv(n;a;z) rmul: b radd: b int_seg: {i..j-} uall: [x:A]. B[x] top: Top all: x:A. B[x] and: P ∧ Q apply: a subtract: m add: m natural_number: $n int: sqequal: t
Definitions unfolded in proof :  uall: [x:A]. B[x] and: P ∧ Q rpolydiv: rpolydiv(n;a;z) member: t ∈ T uimplies: supposing a all: x:A. B[x] decidable: Dec(P) or: P ∨ Q not: ¬A implies:  Q satisfiable_int_formula: satisfiable_int_formula(fmla) exists: x:A. B[x] false: False top: Top prop: sq_type: SQType(T) guard: {T} int_seg: {i..j-} exposed-it: exposed-it bool: 𝔹 unit: Unit it: btrue: tt uiff: uiff(P;Q) ifthenelse: if then else fi  lelt: i ≤ j < k bfalse: ff bnot: ¬bb assert: b rev_implies:  Q iff: ⇐⇒ Q
Lemmas referenced :  istype-top istype-int subtype_base_sq int_subtype_base decidable__equal_int full-omega-unsat intformnot_wf intformeq_wf itermSubtract_wf itermVar_wf itermConstant_wf int_formula_prop_not_lemma istype-void int_formula_prop_eq_lemma int_term_value_subtract_lemma int_term_value_var_lemma int_term_value_constant_lemma int_formula_prop_wf primrec0_lemma int_seg_wf subtract_wf primrec-unroll lt_int_wf eqtt_to_assert assert_of_lt_int int_seg_properties intformand_wf intformless_wf int_formula_prop_and_lemma int_formula_prop_less_lemma eqff_to_assert bool_cases_sqequal bool_wf bool_subtype_base assert-bnot iff_weakening_uiff assert_wf less_than_wf istype-less_than itermAdd_wf int_term_value_add_lemma
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation_alt independent_pairFormation because_Cache cut introduction extract_by_obid hypothesis sqequalRule thin instantiate sqequalHypSubstitution isectElimination cumulativity intEquality independent_isectElimination dependent_functionElimination unionElimination natural_numberEquality approximateComputation independent_functionElimination dependent_pairFormation_alt lambdaEquality_alt int_eqEquality hypothesisEquality isect_memberEquality_alt voidElimination universeIsType equalityTransitivity equalitySymmetry lambdaFormation_alt setElimination rename inhabitedIsType equalityElimination productElimination equalityIstype promote_hyp axiomSqEquality

Latex:
\mforall{}[n:\mBbbZ{}].  \mforall{}[a,z:Top].
    ((rpolydiv(n;a;z)  (n  -  1)  \msim{}  a  n)
    \mwedge{}  (\mforall{}i:\mBbbN{}n  -  1.  (rpolydiv(n;a;z)  i  \msim{}  (a  (i  +  1))  +  (z  *  (rpolydiv(n;a;z)  (i  +  1))))))



Date html generated: 2019_10_29-AM-10_15_26
Last ObjectModification: 2019_01_14-PM-07_12_14

Theory : reals


Home Index