Nuprl Lemma : rsqrt-positive-iff

x:{x:ℝr0 ≤ x} (r0 < rsqrt(x) ⇐⇒ r0 < x)


Proof




Definitions occuring in Statement :  rsqrt: rsqrt(x) rleq: x ≤ y rless: x < y int-to-real: r(n) real: all: x:A. B[x] iff: ⇐⇒ Q set: {x:A| B[x]}  natural_number: $n
Definitions unfolded in proof :  all: x:A. B[x] iff: ⇐⇒ Q and: P ∧ Q implies:  Q member: t ∈ T uall: [x:A]. B[x] subtype_rel: A ⊆B prop: rev_implies:  Q uimplies: supposing a nat_plus: + rless: x < y sq_exists: x:A [B[x]] decidable: Dec(P) or: P ∨ Q not: ¬A satisfiable_int_formula: satisfiable_int_formula(fmla) exists: x:A. B[x] top: Top false: False nat:
Lemmas referenced :  rless_wf int-to-real_wf rsqrt_wf rsqrt-positive real_wf rleq_wf rnexp-rless rleq_weakening_equal nat_plus_properties decidable__lt full-omega-unsat intformnot_wf intformless_wf itermConstant_wf istype-int int_formula_prop_not_lemma istype-void int_formula_prop_less_lemma int_term_value_constant_lemma int_formula_prop_wf istype-less_than rnexp_wf decidable__le intformle_wf int_formula_prop_le_lemma istype-le rless_functionality req_weakening rsqrt-rnexp-2 rnexp0
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity lambdaFormation_alt independent_pairFormation universeIsType cut introduction extract_by_obid sqequalHypSubstitution isectElimination thin natural_numberEquality hypothesis hypothesisEquality applyEquality lambdaEquality_alt setElimination rename inhabitedIsType equalityTransitivity equalitySymmetry sqequalRule dependent_functionElimination dependent_set_memberEquality_alt setIsType because_Cache independent_functionElimination independent_isectElimination unionElimination approximateComputation dependent_pairFormation_alt isect_memberEquality_alt voidElimination productElimination

Latex:
\mforall{}x:\{x:\mBbbR{}|  r0  \mleq{}  x\}  .  (r0  <  rsqrt(x)  \mLeftarrow{}{}\mRightarrow{}  r0  <  x)



Date html generated: 2019_10_30-AM-07_57_40
Last ObjectModification: 2019_03_20-PM-00_31_33

Theory : reals


Home Index