Nuprl Lemma : strong-regular-upto_wf
∀[a,b,n:ℕ]. ∀[f:ℕ+ ⟶ ℤ].  (strong-regular-upto(a;b;n;f) ∈ 𝔹)
Proof
Definitions occuring in Statement : 
strong-regular-upto: strong-regular-upto(a;b;n;f)
, 
nat_plus: ℕ+
, 
nat: ℕ
, 
bool: 𝔹
, 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
function: x:A ⟶ B[x]
, 
int: ℤ
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
strong-regular-upto: strong-regular-upto(a;b;n;f)
, 
so_lambda: λ2x.t[x]
, 
nat: ℕ
, 
int_seg: {i..j-}
, 
nat_plus: ℕ+
, 
le: A ≤ B
, 
and: P ∧ Q
, 
all: ∀x:A. B[x]
, 
decidable: Dec(P)
, 
or: P ∨ Q
, 
iff: P 
⇐⇒ Q
, 
not: ¬A
, 
rev_implies: P 
⇐ Q
, 
implies: P 
⇒ Q
, 
false: False
, 
prop: ℙ
, 
uiff: uiff(P;Q)
, 
uimplies: b supposing a
, 
lelt: i ≤ j < k
, 
subtract: n - m
, 
subtype_rel: A ⊆r B
, 
top: Top
, 
less_than': less_than'(a;b)
, 
true: True
, 
so_apply: x[s]
Lemmas referenced : 
bdd-all_wf, 
le_int_wf, 
absval_wf, 
subtract_wf, 
nat_plus_wf, 
decidable__lt, 
false_wf, 
not-lt-2, 
condition-implies-le, 
minus-add, 
minus-one-mul, 
zero-add, 
minus-one-mul-top, 
add-commutes, 
add_functionality_wrt_le, 
add-associates, 
add-zero, 
le-add-cancel, 
less_than_wf, 
int_seg_wf, 
nat_wf
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation, 
introduction, 
cut, 
sqequalRule, 
extract_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
thin, 
hypothesisEquality, 
lambdaEquality, 
because_Cache, 
multiplyEquality, 
setElimination, 
rename, 
hypothesis, 
addEquality, 
natural_numberEquality, 
applyEquality, 
functionExtensionality, 
dependent_set_memberEquality, 
productElimination, 
dependent_functionElimination, 
unionElimination, 
independent_pairFormation, 
lambdaFormation, 
voidElimination, 
independent_functionElimination, 
independent_isectElimination, 
isect_memberEquality, 
voidEquality, 
intEquality, 
minusEquality, 
axiomEquality, 
equalityTransitivity, 
equalitySymmetry, 
functionEquality
Latex:
\mforall{}[a,b,n:\mBbbN{}].  \mforall{}[f:\mBbbN{}\msupplus{}  {}\mrightarrow{}  \mBbbZ{}].    (strong-regular-upto(a;b;n;f)  \mmember{}  \mBbbB{})
Date html generated:
2017_10_03-AM-08_42_56
Last ObjectModification:
2017_09_20-PM-05_12_54
Theory : reals
Home
Index