Nuprl Lemma : Riemann-integral-same-endpoints
∀[a:ℝ]. ∀[f:{f:[a, a] ⟶ℝ| ifun(f;[a, a])} ].  (∫ f[x] dx on [a, a] = r0)
Proof
Definitions occuring in Statement : 
Riemann-integral: ∫ f[x] dx on [a, b], 
ifun: ifun(f;I), 
rfun: I ⟶ℝ, 
rccint: [l, u], 
req: x = y, 
int-to-real: r(n), 
real: ℝ, 
uall: ∀[x:A]. B[x], 
so_apply: x[s], 
set: {x:A| B[x]} , 
natural_number: $n
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x], 
member: t ∈ T, 
uimplies: b supposing a, 
prop: ℙ, 
so_lambda: λ2x.t[x], 
label: ...$L... t, 
rfun: I ⟶ℝ, 
so_apply: x[s], 
ifun: ifun(f;I), 
all: ∀x:A. B[x], 
top: Top, 
real-fun: real-fun(f;a;b), 
implies: P ⇒ Q, 
uiff: uiff(P;Q), 
and: P ∧ Q, 
rev_uimplies: rev_uimplies(P;Q), 
iff: P ⇐⇒ Q
Lemmas referenced : 
req_witness, 
Riemann-integral_wf, 
rleq_weakening_equal, 
rleq_wf, 
i-member_wf, 
rccint_wf, 
real_wf, 
left_endpoint_rccint_lemma, 
right_endpoint_rccint_lemma, 
req_functionality, 
req_weakening, 
req_wf, 
set_wf, 
ifun_wf, 
rccint-icompact, 
int-to-real_wf, 
rfun_wf, 
Riemann-integral-single
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation, 
introduction, 
cut, 
extract_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
thin, 
hypothesisEquality, 
because_Cache, 
independent_isectElimination, 
hypothesis, 
dependent_set_memberEquality, 
sqequalRule, 
setElimination, 
rename, 
lambdaEquality, 
applyEquality, 
setEquality, 
dependent_functionElimination, 
isect_memberEquality, 
voidElimination, 
voidEquality, 
lambdaFormation, 
independent_functionElimination, 
productElimination, 
natural_numberEquality
Latex:
\mforall{}[a:\mBbbR{}].  \mforall{}[f:\{f:[a,  a]  {}\mrightarrow{}\mBbbR{}|  ifun(f;[a,  a])\}  ].    (\mint{}  f[x]  dx  on  [a,  a]  =  r0)
Date html generated:
2016_10_26-PM-00_03_26
Last ObjectModification:
2016_09_12-PM-05_38_18
Theory : reals_2
Home
Index