Nuprl Lemma : Kleisli-adjunction_wf
∀[C:SmallCategory]. ∀[M:Monad(C)]. (Kl(C;M) ∈ KlF(C;M) -| KlG(C;M))
Proof
Definitions occuring in Statement :
Kleisli-adjunction: Kl(C;M)
,
Kleisli-right: KlG(C;M)
,
Kleisli-left: KlF(C;M)
,
Kleisli-cat: Kl(C;M)
,
cat-monad: Monad(C)
,
counit-unit-adjunction: F -| G
,
small-category: SmallCategory
,
uall: ∀[x:A]. B[x]
,
member: t ∈ T
Definitions unfolded in proof :
uall: ∀[x:A]. B[x]
,
member: t ∈ T
,
Kleisli-adjunction: Kl(C;M)
,
all: ∀x:A. B[x]
,
so_lambda: λ2x.t[x]
,
Kleisli-right: KlG(C;M)
,
Kleisli-left: KlF(C;M)
,
Kleisli-cat: Kl(C;M)
,
top: Top
,
so_lambda: so_lambda(x,y,z.t[x; y; z])
,
so_apply: x[s1;s2;s3]
,
so_apply: x[s]
,
mk-cat: mk-cat,
uimplies: b supposing a
,
cat_comp: g o f
,
counit-unit-equations: counit-unit-equations(D;C;F;G;eps;eta)
,
and: P ∧ Q
,
cand: A c∧ B
,
squash: ↓T
,
prop: ℙ
,
true: True
,
subtype_rel: A ⊆r B
,
guard: {T}
,
iff: P
⇐⇒ Q
,
rev_implies: P
⇐ Q
,
implies: P
⇒ Q
,
cat-ob: cat-ob(C)
,
pi1: fst(t)
,
cat-arrow: cat-arrow(C)
,
pi2: snd(t)
Lemmas referenced :
mk-adjunction_wf,
Kleisli-cat_wf,
Kleisli-left_wf,
Kleisli-right_wf,
ob_mk_functor_lemma,
cat_arrow_triple_lemma,
cat-ob_wf,
monad-unit_wf,
cat_comp_tuple_lemma,
arrow_mk_functor_lemma,
cat_id_tuple_lemma,
cat_ob_pair_lemma,
equal_wf,
squash_wf,
true_wf,
cat-arrow_wf,
monad-fun_wf,
cat-comp-assoc,
monad-extend_wf,
cat-id_wf,
iff_weakening_equal,
cat-comp_wf,
monad-unit-extend,
cat-comp-ident,
cat-monad_wf,
small-category_wf,
subtype_rel-equal,
cat-comp-ident1,
cat-comp-ident2
Rules used in proof :
sqequalSubstitution,
sqequalTransitivity,
computationStep,
sqequalReflexivity,
isect_memberFormation,
introduction,
cut,
sqequalRule,
extract_by_obid,
sqequalHypSubstitution,
isectElimination,
thin,
hypothesisEquality,
because_Cache,
dependent_functionElimination,
hypothesis,
lambdaEquality,
isect_memberEquality,
voidElimination,
voidEquality,
independent_isectElimination,
lambdaFormation,
applyEquality,
imageElimination,
equalityTransitivity,
equalitySymmetry,
universeEquality,
natural_numberEquality,
imageMemberEquality,
baseClosed,
productElimination,
independent_functionElimination,
independent_pairFormation,
axiomEquality
Latex:
\mforall{}[C:SmallCategory]. \mforall{}[M:Monad(C)]. (Kl(C;M) \mmember{} KlF(C;M) -| KlG(C;M))
Date html generated:
2017_10_05-AM-00_52_54
Last ObjectModification:
2017_07_28-AM-09_21_10
Theory : small!categories
Home
Index