Nuprl Lemma : bag-cat-monad_wf

bag-cat-monad() ∈ Monad(TypeCat)


Proof




Definitions occuring in Statement :  bag-cat-monad: bag-cat-monad() cat-monad: Monad(C) type-cat: TypeCat member: t ∈ T
Definitions unfolded in proof :  member: t ∈ T uall: [x:A]. B[x] so_lambda: λ2x.t[x] subtype_rel: A ⊆B cat-ob: cat-ob(C) pi1: fst(t) type-cat: TypeCat so_apply: x[s] so_lambda: so_lambda(x,y,z.t[x; y; z]) all: x:A. B[x] top: Top so_apply: x[s1;s2;s3] uimplies: supposing a compose: g squash: T prop: true: True guard: {T} iff: ⇐⇒ Q and: P ∧ Q rev_implies:  Q implies:  Q id_functor: 1 bag-cat-monad: bag-cat-monad() functor-comp: functor-comp(F;G) bag-combine: x∈bs.f[x]
Lemmas referenced :  type-cat_wf mk-functor_wf bag_wf subtype_rel_self cat-ob_wf cat_arrow_triple_lemma cat_ob_pair_lemma bag-map_wf cat-arrow_wf cat_comp_tuple_lemma bag-map-map compose_wf cat_id_tuple_lemma equal_wf squash_wf true_wf bag-map-trivial iff_weakening_equal mk-nat-trans_wf id_functor_wf ob_mk_functor_lemma single-bag_wf arrow_mk_functor_lemma bag_map_single_lemma mk-monad_wf functor-comp_wf bag-union_wf bag-map-union2 ap_mk_nat_trans_lemma bag-union-union-as-combine bag-combine-single-right bag-union-single bag-subtype-list
Rules used in proof :  cut sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity introduction extract_by_obid hypothesis thin instantiate sqequalHypSubstitution isectElimination because_Cache sqequalRule lambdaEquality hypothesisEquality applyEquality universeEquality dependent_functionElimination isect_memberEquality voidElimination voidEquality independent_isectElimination lambdaFormation functionExtensionality imageElimination equalityTransitivity equalitySymmetry natural_numberEquality imageMemberEquality baseClosed productElimination independent_functionElimination

Latex:
bag-cat-monad()  \mmember{}  Monad(TypeCat)



Date html generated: 2018_05_22-PM-09_58_05
Last ObjectModification: 2018_05_20-PM-10_11_02

Theory : small!categories


Home Index