Nuprl Lemma : bag-cat-monad_wf
bag-cat-monad() ∈ Monad(TypeCat)
Proof
Definitions occuring in Statement : 
bag-cat-monad: bag-cat-monad()
, 
cat-monad: Monad(C)
, 
type-cat: TypeCat
, 
member: t ∈ T
Definitions unfolded in proof : 
member: t ∈ T
, 
uall: ∀[x:A]. B[x]
, 
so_lambda: λ2x.t[x]
, 
subtype_rel: A ⊆r B
, 
cat-ob: cat-ob(C)
, 
pi1: fst(t)
, 
type-cat: TypeCat
, 
so_apply: x[s]
, 
so_lambda: so_lambda(x,y,z.t[x; y; z])
, 
all: ∀x:A. B[x]
, 
top: Top
, 
so_apply: x[s1;s2;s3]
, 
uimplies: b supposing a
, 
compose: f o g
, 
squash: ↓T
, 
prop: ℙ
, 
true: True
, 
guard: {T}
, 
iff: P 
⇐⇒ Q
, 
and: P ∧ Q
, 
rev_implies: P 
⇐ Q
, 
implies: P 
⇒ Q
, 
id_functor: 1
, 
bag-cat-monad: bag-cat-monad()
, 
functor-comp: functor-comp(F;G)
, 
bag-combine: ⋃x∈bs.f[x]
Lemmas referenced : 
type-cat_wf, 
mk-functor_wf, 
bag_wf, 
subtype_rel_self, 
cat-ob_wf, 
cat_arrow_triple_lemma, 
cat_ob_pair_lemma, 
bag-map_wf, 
cat-arrow_wf, 
cat_comp_tuple_lemma, 
bag-map-map, 
compose_wf, 
cat_id_tuple_lemma, 
equal_wf, 
squash_wf, 
true_wf, 
bag-map-trivial, 
iff_weakening_equal, 
mk-nat-trans_wf, 
id_functor_wf, 
ob_mk_functor_lemma, 
single-bag_wf, 
arrow_mk_functor_lemma, 
bag_map_single_lemma, 
mk-monad_wf, 
functor-comp_wf, 
bag-union_wf, 
bag-map-union2, 
ap_mk_nat_trans_lemma, 
bag-union-union-as-combine, 
bag-combine-single-right, 
bag-union-single, 
bag-subtype-list
Rules used in proof : 
cut, 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
introduction, 
extract_by_obid, 
hypothesis, 
thin, 
instantiate, 
sqequalHypSubstitution, 
isectElimination, 
because_Cache, 
sqequalRule, 
lambdaEquality, 
hypothesisEquality, 
applyEquality, 
universeEquality, 
dependent_functionElimination, 
isect_memberEquality, 
voidElimination, 
voidEquality, 
independent_isectElimination, 
lambdaFormation, 
functionExtensionality, 
imageElimination, 
equalityTransitivity, 
equalitySymmetry, 
natural_numberEquality, 
imageMemberEquality, 
baseClosed, 
productElimination, 
independent_functionElimination
Latex:
bag-cat-monad()  \mmember{}  Monad(TypeCat)
Date html generated:
2018_05_22-PM-09_58_05
Last ObjectModification:
2018_05_20-PM-10_11_02
Theory : small!categories
Home
Index