Nuprl Lemma : equal-monads

[C:SmallCategory]. ∀[M1,M2:Monad(C)].
  (M1 M2 ∈ Monad(C)) supposing 
     ((∀x:cat-ob(C). (monad-op(M1;x) monad-op(M2;x) ∈ (cat-arrow(C) M1(M1(x)) M1(x)))) and 
     (∀x:cat-ob(C). (monad-unit(M1;x) monad-unit(M2;x) ∈ (cat-arrow(C) M1(x)))) and 
     (monad-functor(M1) monad-functor(M2) ∈ Functor(C;C)))


Proof




Definitions occuring in Statement :  monad-op: monad-op(M;x) monad-unit: monad-unit(M;x) monad-fun: M(x) monad-functor: monad-functor(M) cat-monad: Monad(C) cat-functor: Functor(C1;C2) cat-arrow: cat-arrow(C) cat-ob: cat-ob(C) small-category: SmallCategory uimplies: supposing a uall: [x:A]. B[x] all: x:A. B[x] apply: a equal: t ∈ T
Definitions unfolded in proof :  uall: [x:A]. B[x] uimplies: supposing a monad-fun: M(x) all: x:A. B[x] member: t ∈ T squash: T prop: true: True subtype_rel: A ⊆B guard: {T} iff: ⇐⇒ Q and: P ∧ Q rev_implies:  Q implies:  Q cat-monad: Monad(C) spreadn: spread3 nat-trans: nat-trans(C;D;F;G) functor-comp: functor-comp(F;G) top: Top so_lambda: so_lambda(x,y,z.t[x; y; z]) so_apply: x[s1;s2;s3] so_lambda: λ2x.t[x] so_apply: x[s] id_functor: 1 monad-op: monad-op(M;x) pi2: snd(t) monad-functor: monad-functor(M) pi1: fst(t) monad-unit: monad-unit(M;x) mk-functor: mk-functor functor-ob: ob(F)
Lemmas referenced :  equal_wf squash_wf true_wf istype-universe cat-ob_wf functor-ob_wf cat-functor_wf monad-functor_wf subtype_rel_self iff_weakening_equal ob_mk_functor_lemma istype-void arrow_mk_functor_lemma cat-arrow_wf cat-comp_wf cat-id_wf functor-arrow_wf monad-fun_wf monad-op_wf subtype_rel-equal monad-unit_wf cat-monad_wf small-category_wf nat-trans_wf id_functor_wf functor-comp_wf
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation_alt cut sqequalRule lambdaFormation_alt applyEquality thin lambdaEquality_alt sqequalHypSubstitution imageElimination introduction extract_by_obid isectElimination hypothesisEquality equalityTransitivity hypothesis equalitySymmetry universeIsType inhabitedIsType instantiate universeEquality because_Cache natural_numberEquality imageMemberEquality baseClosed independent_isectElimination productElimination independent_functionElimination setElimination rename dependent_set_memberEquality_alt dependent_functionElimination isect_memberEquality_alt voidElimination productIsType functionIsType equalityIsType1 dependent_pairEquality_alt independent_pairEquality lambdaEquality functionExtensionality voidEquality isect_memberEquality

Latex:
\mforall{}[C:SmallCategory].  \mforall{}[M1,M2:Monad(C)].
    (M1  =  M2)  supposing 
          ((\mforall{}x:cat-ob(C).  (monad-op(M1;x)  =  monad-op(M2;x)))  and 
          (\mforall{}x:cat-ob(C).  (monad-unit(M1;x)  =  monad-unit(M2;x)))  and 
          (monad-functor(M1)  =  monad-functor(M2)))



Date html generated: 2019_10_31-AM-07_25_25
Last ObjectModification: 2018_11_13-AM-10_03_14

Theory : small!categories


Home Index