Nuprl Lemma : equal-monads
∀[C:SmallCategory]. ∀[M1,M2:Monad(C)].
  (M1 = M2 ∈ Monad(C)) supposing 
     ((∀x:cat-ob(C). (monad-op(M1;x) = monad-op(M2;x) ∈ (cat-arrow(C) M1(M1(x)) M1(x)))) and 
     (∀x:cat-ob(C). (monad-unit(M1;x) = monad-unit(M2;x) ∈ (cat-arrow(C) x M1(x)))) and 
     (monad-functor(M1) = monad-functor(M2) ∈ Functor(C;C)))
Proof
Definitions occuring in Statement : 
monad-op: monad-op(M;x)
, 
monad-unit: monad-unit(M;x)
, 
monad-fun: M(x)
, 
monad-functor: monad-functor(M)
, 
cat-monad: Monad(C)
, 
cat-functor: Functor(C1;C2)
, 
cat-arrow: cat-arrow(C)
, 
cat-ob: cat-ob(C)
, 
small-category: SmallCategory
, 
uimplies: b supposing a
, 
uall: ∀[x:A]. B[x]
, 
all: ∀x:A. B[x]
, 
apply: f a
, 
equal: s = t ∈ T
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x]
, 
uimplies: b supposing a
, 
monad-fun: M(x)
, 
all: ∀x:A. B[x]
, 
member: t ∈ T
, 
squash: ↓T
, 
prop: ℙ
, 
true: True
, 
subtype_rel: A ⊆r B
, 
guard: {T}
, 
iff: P 
⇐⇒ Q
, 
and: P ∧ Q
, 
rev_implies: P 
⇐ Q
, 
implies: P 
⇒ Q
, 
cat-monad: Monad(C)
, 
spreadn: spread3, 
nat-trans: nat-trans(C;D;F;G)
, 
functor-comp: functor-comp(F;G)
, 
top: Top
, 
so_lambda: so_lambda(x,y,z.t[x; y; z])
, 
so_apply: x[s1;s2;s3]
, 
so_lambda: λ2x.t[x]
, 
so_apply: x[s]
, 
id_functor: 1
, 
monad-op: monad-op(M;x)
, 
pi2: snd(t)
, 
monad-functor: monad-functor(M)
, 
pi1: fst(t)
, 
monad-unit: monad-unit(M;x)
, 
mk-functor: mk-functor, 
functor-ob: ob(F)
Lemmas referenced : 
equal_wf, 
squash_wf, 
true_wf, 
istype-universe, 
cat-ob_wf, 
functor-ob_wf, 
cat-functor_wf, 
monad-functor_wf, 
subtype_rel_self, 
iff_weakening_equal, 
ob_mk_functor_lemma, 
istype-void, 
arrow_mk_functor_lemma, 
cat-arrow_wf, 
cat-comp_wf, 
cat-id_wf, 
functor-arrow_wf, 
monad-fun_wf, 
monad-op_wf, 
subtype_rel-equal, 
monad-unit_wf, 
cat-monad_wf, 
small-category_wf, 
nat-trans_wf, 
id_functor_wf, 
functor-comp_wf
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation_alt, 
cut, 
sqequalRule, 
lambdaFormation_alt, 
applyEquality, 
thin, 
lambdaEquality_alt, 
sqequalHypSubstitution, 
imageElimination, 
introduction, 
extract_by_obid, 
isectElimination, 
hypothesisEquality, 
equalityTransitivity, 
hypothesis, 
equalitySymmetry, 
universeIsType, 
inhabitedIsType, 
instantiate, 
universeEquality, 
because_Cache, 
natural_numberEquality, 
imageMemberEquality, 
baseClosed, 
independent_isectElimination, 
productElimination, 
independent_functionElimination, 
setElimination, 
rename, 
dependent_set_memberEquality_alt, 
dependent_functionElimination, 
isect_memberEquality_alt, 
voidElimination, 
productIsType, 
functionIsType, 
equalityIsType1, 
dependent_pairEquality_alt, 
independent_pairEquality, 
lambdaEquality, 
functionExtensionality, 
voidEquality, 
isect_memberEquality
Latex:
\mforall{}[C:SmallCategory].  \mforall{}[M1,M2:Monad(C)].
    (M1  =  M2)  supposing 
          ((\mforall{}x:cat-ob(C).  (monad-op(M1;x)  =  monad-op(M2;x)))  and 
          (\mforall{}x:cat-ob(C).  (monad-unit(M1;x)  =  monad-unit(M2;x)))  and 
          (monad-functor(M1)  =  monad-functor(M2)))
Date html generated:
2019_10_31-AM-07_25_25
Last ObjectModification:
2018_11_13-AM-10_03_14
Theory : small!categories
Home
Index