Nuprl Lemma : cWO-induction_1-ext

[T:Type]. ∀[R:T ⟶ T ⟶ ℙ].  ∀[Q:T ⟶ ℙ]. TI(T;x,y.R[x;y];t.Q[t]) supposing cWO(T;x,y.R[x;y])


Proof




Definitions occuring in Statement :  cWO: cWO(T;x,y.R[x; y]) TI: TI(T;x,y.R[x; y];t.Q[t]) uimplies: supposing a uall: [x:A]. B[x] prop: so_apply: x[s1;s2] so_apply: x[s] function: x:A ⟶ B[x] universe: Type
Definitions unfolded in proof :  member: t ∈ T cWO-induction_1 basic_strong_bar_induction decidable__and2 decidable__lt decidable__squash uall: [x:A]. B[x] so_lambda: so_lambda(x,y,z,w.t[x; y; z; w]) so_apply: x[s1;s2;s3;s4] top: Top uimplies: supposing a strict4: strict4(F) and: P ∧ Q all: x:A. B[x] implies:  Q has-value: (a)↓ prop: guard: {T} or: P ∨ Q squash: T so_lambda: λ2y.t[x; y] so_apply: x[s1;s2] so_lambda: λ2x.t[x] so_apply: x[s] decidable_functionality iff_preserves_decidability decidable__and decidable__less_than' decidable__assert isr: isr(x) subtract: m bfalse: ff any: any x btrue: tt squash_elim it: seq-normalize: seq-normalize(n;s) ifthenelse: if then else fi 
Lemmas referenced :  cWO-induction_1 lifting-strict-spread has-value_wf_base base_wf is-exception_wf top_wf equal_wf lifting-strict-decide lifting-strict-less strict4-spread basic_strong_bar_induction decidable__and2 decidable__lt decidable__squash decidable_functionality iff_preserves_decidability decidable__and decidable__less_than' decidable__assert squash_elim
Rules used in proof :  introduction sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity cut instantiate extract_by_obid hypothesis sqequalRule thin sqequalHypSubstitution isectElimination baseClosed isect_memberEquality voidElimination voidEquality independent_isectElimination independent_pairFormation lambdaFormation callbyvalueApply baseApply closedConclusion hypothesisEquality applyExceptionCases inrFormation imageMemberEquality imageElimination exceptionSqequal inlFormation callbyvalueDecide equalityTransitivity equalitySymmetry unionEquality unionElimination sqleReflexivity dependent_functionElimination independent_functionElimination decideExceptionCases because_Cache

Latex:
\mforall{}[T:Type].  \mforall{}[R:T  {}\mrightarrow{}  T  {}\mrightarrow{}  \mBbbP{}].    \mforall{}[Q:T  {}\mrightarrow{}  \mBbbP{}].  TI(T;x,y.R[x;y];t.Q[t])  supposing  cWO(T;x,y.R[x;y])



Date html generated: 2017_04_14-AM-07_29_02
Last ObjectModification: 2017_02_27-PM-02_56_56

Theory : bar-induction


Home Index