Nuprl Lemma : cWO-induction_1-ext
∀[T:Type]. ∀[R:T ⟶ T ⟶ ℙ].  ∀[Q:T ⟶ ℙ]. TI(T;x,y.R[x;y];t.Q[t]) supposing cWO(T;x,y.R[x;y])
Proof
Definitions occuring in Statement : 
cWO: cWO(T;x,y.R[x; y]), 
TI: TI(T;x,y.R[x; y];t.Q[t]), 
uimplies: b supposing a, 
uall: ∀[x:A]. B[x], 
prop: ℙ, 
so_apply: x[s1;s2], 
so_apply: x[s], 
function: x:A ⟶ B[x], 
universe: Type
Definitions unfolded in proof : 
member: t ∈ T, 
cWO-induction_1, 
basic_strong_bar_induction, 
decidable__and2, 
decidable__lt, 
decidable__squash, 
uall: ∀[x:A]. B[x], 
so_lambda: so_lambda(x,y,z,w.t[x; y; z; w]), 
so_apply: x[s1;s2;s3;s4], 
top: Top, 
uimplies: b supposing a, 
strict4: strict4(F), 
and: P ∧ Q, 
all: ∀x:A. B[x], 
implies: P ⇒ Q, 
has-value: (a)↓, 
prop: ℙ, 
guard: {T}, 
or: P ∨ Q, 
squash: ↓T, 
so_lambda: λ2x y.t[x; y], 
so_apply: x[s1;s2], 
so_lambda: λ2x.t[x], 
so_apply: x[s], 
decidable_functionality, 
iff_preserves_decidability, 
decidable__and, 
decidable__less_than', 
decidable__assert, 
isr: isr(x), 
subtract: n - m, 
bfalse: ff, 
any: any x, 
btrue: tt, 
squash_elim, 
it: ⋅, 
seq-normalize: seq-normalize(n;s), 
ifthenelse: if b then t else f fi 
Lemmas referenced : 
cWO-induction_1, 
lifting-strict-spread, 
has-value_wf_base, 
base_wf, 
is-exception_wf, 
top_wf, 
equal_wf, 
lifting-strict-decide, 
lifting-strict-less, 
strict4-spread, 
basic_strong_bar_induction, 
decidable__and2, 
decidable__lt, 
decidable__squash, 
decidable_functionality, 
iff_preserves_decidability, 
decidable__and, 
decidable__less_than', 
decidable__assert, 
squash_elim
Rules used in proof : 
introduction, 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
cut, 
instantiate, 
extract_by_obid, 
hypothesis, 
sqequalRule, 
thin, 
sqequalHypSubstitution, 
isectElimination, 
baseClosed, 
isect_memberEquality, 
voidElimination, 
voidEquality, 
independent_isectElimination, 
independent_pairFormation, 
lambdaFormation, 
callbyvalueApply, 
baseApply, 
closedConclusion, 
hypothesisEquality, 
applyExceptionCases, 
inrFormation, 
imageMemberEquality, 
imageElimination, 
exceptionSqequal, 
inlFormation, 
callbyvalueDecide, 
equalityTransitivity, 
equalitySymmetry, 
unionEquality, 
unionElimination, 
sqleReflexivity, 
dependent_functionElimination, 
independent_functionElimination, 
decideExceptionCases, 
because_Cache
Latex:
\mforall{}[T:Type].  \mforall{}[R:T  {}\mrightarrow{}  T  {}\mrightarrow{}  \mBbbP{}].    \mforall{}[Q:T  {}\mrightarrow{}  \mBbbP{}].  TI(T;x,y.R[x;y];t.Q[t])  supposing  cWO(T;x,y.R[x;y])
Date html generated:
2017_04_14-AM-07_29_02
Last ObjectModification:
2017_02_27-PM-02_56_56
Theory : bar-induction
Home
Index