Nuprl Lemma : cWO-induction_1-ext
∀[T:Type]. ∀[R:T ⟶ T ⟶ ℙ].  ∀[Q:T ⟶ ℙ]. TI(T;x,y.R[x;y];t.Q[t]) supposing cWO(T;x,y.R[x;y])
Proof
Definitions occuring in Statement : 
cWO: cWO(T;x,y.R[x; y])
, 
TI: TI(T;x,y.R[x; y];t.Q[t])
, 
uimplies: b supposing a
, 
uall: ∀[x:A]. B[x]
, 
prop: ℙ
, 
so_apply: x[s1;s2]
, 
so_apply: x[s]
, 
function: x:A ⟶ B[x]
, 
universe: Type
Definitions unfolded in proof : 
member: t ∈ T
, 
cWO-induction_1, 
basic_strong_bar_induction, 
decidable__and2, 
decidable__lt, 
decidable__squash, 
uall: ∀[x:A]. B[x]
, 
so_lambda: so_lambda(x,y,z,w.t[x; y; z; w])
, 
so_apply: x[s1;s2;s3;s4]
, 
top: Top
, 
uimplies: b supposing a
, 
strict4: strict4(F)
, 
and: P ∧ Q
, 
all: ∀x:A. B[x]
, 
implies: P 
⇒ Q
, 
has-value: (a)↓
, 
prop: ℙ
, 
guard: {T}
, 
or: P ∨ Q
, 
squash: ↓T
, 
so_lambda: λ2x y.t[x; y]
, 
so_apply: x[s1;s2]
, 
so_lambda: λ2x.t[x]
, 
so_apply: x[s]
, 
decidable_functionality, 
iff_preserves_decidability, 
decidable__and, 
decidable__less_than', 
decidable__assert, 
isr: isr(x)
, 
subtract: n - m
, 
bfalse: ff
, 
any: any x
, 
btrue: tt
, 
squash_elim, 
it: ⋅
, 
seq-normalize: seq-normalize(n;s)
, 
ifthenelse: if b then t else f fi 
Lemmas referenced : 
cWO-induction_1, 
lifting-strict-spread, 
has-value_wf_base, 
base_wf, 
is-exception_wf, 
top_wf, 
equal_wf, 
lifting-strict-decide, 
lifting-strict-less, 
strict4-spread, 
basic_strong_bar_induction, 
decidable__and2, 
decidable__lt, 
decidable__squash, 
decidable_functionality, 
iff_preserves_decidability, 
decidable__and, 
decidable__less_than', 
decidable__assert, 
squash_elim
Rules used in proof : 
introduction, 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
cut, 
instantiate, 
extract_by_obid, 
hypothesis, 
sqequalRule, 
thin, 
sqequalHypSubstitution, 
isectElimination, 
baseClosed, 
isect_memberEquality, 
voidElimination, 
voidEquality, 
independent_isectElimination, 
independent_pairFormation, 
lambdaFormation, 
callbyvalueApply, 
baseApply, 
closedConclusion, 
hypothesisEquality, 
applyExceptionCases, 
inrFormation, 
imageMemberEquality, 
imageElimination, 
exceptionSqequal, 
inlFormation, 
callbyvalueDecide, 
equalityTransitivity, 
equalitySymmetry, 
unionEquality, 
unionElimination, 
sqleReflexivity, 
dependent_functionElimination, 
independent_functionElimination, 
decideExceptionCases, 
because_Cache
Latex:
\mforall{}[T:Type].  \mforall{}[R:T  {}\mrightarrow{}  T  {}\mrightarrow{}  \mBbbP{}].    \mforall{}[Q:T  {}\mrightarrow{}  \mBbbP{}].  TI(T;x,y.R[x;y];t.Q[t])  supposing  cWO(T;x,y.R[x;y])
Date html generated:
2017_04_14-AM-07_29_02
Last ObjectModification:
2017_02_27-PM-02_56_56
Theory : bar-induction
Home
Index