Nuprl Lemma : cWO-induction_1
∀[T:Type]. ∀[R:T ⟶ T ⟶ ℙ].  ∀[Q:T ⟶ ℙ]. TI(T;x,y.R[x;y];t.Q[t]) supposing cWO(T;x,y.R[x;y])
Proof
Definitions occuring in Statement : 
cWO: cWO(T;x,y.R[x; y])
, 
TI: TI(T;x,y.R[x; y];t.Q[t])
, 
uimplies: b supposing a
, 
uall: ∀[x:A]. B[x]
, 
prop: ℙ
, 
so_apply: x[s1;s2]
, 
so_apply: x[s]
, 
function: x:A ⟶ B[x]
, 
universe: Type
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x]
, 
uimplies: b supposing a
, 
member: t ∈ T
, 
cWO: cWO(T;x,y.R[x; y])
, 
all: ∀x:A. B[x]
, 
squash: ↓T
, 
TI: TI(T;x,y.R[x; y];t.Q[t])
, 
implies: P 
⇒ Q
, 
so_apply: x[s1;s2]
, 
subtype_rel: A ⊆r B
, 
prop: ℙ
, 
so_apply: x[s]
, 
so_lambda: λ2x y.t[x; y]
, 
so_lambda: so_lambda(x,y,z.t[x; y; z])
, 
bfalse: ff
, 
ifthenelse: if b then t else f fi 
, 
assert: ↑b
, 
outl: outl(x)
, 
true: True
, 
less_than': less_than'(a;b)
, 
le: A ≤ B
, 
top: Top
, 
subtract: n - m
, 
uiff: uiff(P;Q)
, 
false: False
, 
rev_implies: P 
⇐ Q
, 
not: ¬A
, 
iff: P 
⇐⇒ Q
, 
or: P ∨ Q
, 
decidable: Dec(P)
, 
lelt: i ≤ j < k
, 
int_seg: {i..j-}
, 
isl: isl(x)
, 
nat: ℕ
, 
and: P ∧ Q
, 
isr: isr(x)
, 
consistent-seq: R-consistent-seq(n)
, 
so_lambda: λ2x.t[x]
, 
btrue: tt
, 
cand: A c∧ B
, 
bnot: ¬bb
, 
guard: {T}
, 
sq_type: SQType(T)
, 
exists: ∃x:A. B[x]
, 
it: ⋅
, 
unit: Unit
, 
bool: 𝔹
, 
seq-add: s.x@n
, 
sq_stable: SqStable(P)
, 
less_than: a < b
Lemmas referenced : 
istype-universe, 
subtype_rel_self, 
cWO_wf, 
basic_strong_bar_induction, 
unit_wf2, 
int_seg_wf, 
outl_wf, 
le_wf, 
le-add-cancel-alt, 
zero-mul, 
add-mul-special, 
not-lt-2, 
decidable__lt, 
le-add-cancel, 
add-zero, 
add_functionality_wrt_le, 
add-commutes, 
add-swap, 
add-associates, 
minus-minus, 
istype-int, 
minus-add, 
nat_wf, 
istype-void, 
minus-one-mul-top, 
zero-add, 
minus-one-mul, 
condition-implies-le, 
less-iff-le, 
not-le-2, 
istype-false, 
decidable__le, 
subtract_wf, 
bfalse_wf, 
btrue_wf, 
assert_wf, 
less_than_wf, 
consistent-seq_wf, 
all_wf, 
decidable__assert, 
decidable__and2, 
true_wf, 
istype-less_than, 
isl_wf, 
not-equal-2, 
int_subtype_base, 
set_subtype_base, 
assert_of_bnot, 
iff_weakening_uiff, 
equal_wf, 
not_wf, 
bnot_wf, 
iff_transitivity, 
bool_subtype_base, 
bool_wf, 
subtype_base_sq, 
bool_cases_sqequal, 
eqff_to_assert, 
assert_of_eq_int, 
eqtt_to_assert, 
eq_int_wf, 
istype-assert, 
seq-add_wf, 
minus-zero, 
le-add-cancel2, 
sq_stable__le, 
add-subtract-cancel, 
squash_wf, 
iff_weakening_equal, 
isr_wf
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
Error :isect_memberFormation_alt, 
cut, 
introduction, 
sqequalRule, 
sqequalHypSubstitution, 
Error :lambdaEquality_alt, 
dependent_functionElimination, 
thin, 
hypothesisEquality, 
imageElimination, 
hypothesis, 
imageMemberEquality, 
baseClosed, 
Error :functionIsTypeImplies, 
Error :inhabitedIsType, 
rename, 
Error :lambdaFormation_alt, 
extract_by_obid, 
isectElimination, 
Error :functionIsType, 
Error :setIsType, 
Error :universeIsType, 
applyEquality, 
instantiate, 
universeEquality, 
setElimination, 
because_Cache, 
independent_functionElimination, 
unionEquality, 
Error :unionIsType, 
Error :equalityIsType1, 
Error :productIsType, 
equalitySymmetry, 
equalityTransitivity, 
minusEquality, 
Error :isect_memberEquality_alt, 
addEquality, 
independent_isectElimination, 
voidElimination, 
independent_pairFormation, 
Error :dependent_set_memberEquality_alt, 
productElimination, 
unionElimination, 
natural_numberEquality, 
productEquality, 
functionEquality, 
setEquality, 
closedConclusion, 
voidEquality, 
Error :inlEquality_alt, 
multiplyEquality, 
int_eqReduceFalseSq, 
baseApply, 
Error :equalityIsType4, 
intEquality, 
cumulativity, 
promote_hyp, 
Error :dependent_pairFormation_alt, 
int_eqReduceTrueSq, 
equalityElimination, 
applyLambdaEquality, 
hyp_replacement
Latex:
\mforall{}[T:Type].  \mforall{}[R:T  {}\mrightarrow{}  T  {}\mrightarrow{}  \mBbbP{}].    \mforall{}[Q:T  {}\mrightarrow{}  \mBbbP{}].  TI(T;x,y.R[x;y];t.Q[t])  supposing  cWO(T;x,y.R[x;y])
Date html generated:
2019_06_20-AM-11_29_48
Last ObjectModification:
2018_10_12-AM-11_32_44
Theory : bar-induction
Home
Index