Nuprl Lemma : cWO-induction_1

[T:Type]. ∀[R:T ⟶ T ⟶ ℙ].  ∀[Q:T ⟶ ℙ]. TI(T;x,y.R[x;y];t.Q[t]) supposing cWO(T;x,y.R[x;y])


Proof




Definitions occuring in Statement :  cWO: cWO(T;x,y.R[x; y]) TI: TI(T;x,y.R[x; y];t.Q[t]) uimplies: supposing a uall: [x:A]. B[x] prop: so_apply: x[s1;s2] so_apply: x[s] function: x:A ⟶ B[x] universe: Type
Definitions unfolded in proof :  uall: [x:A]. B[x] uimplies: supposing a member: t ∈ T cWO: cWO(T;x,y.R[x; y]) all: x:A. B[x] squash: T TI: TI(T;x,y.R[x; y];t.Q[t]) implies:  Q so_apply: x[s1;s2] subtype_rel: A ⊆B prop: so_apply: x[s] so_lambda: λ2y.t[x; y] so_lambda: so_lambda(x,y,z.t[x; y; z]) bfalse: ff ifthenelse: if then else fi  assert: b outl: outl(x) true: True less_than': less_than'(a;b) le: A ≤ B top: Top subtract: m uiff: uiff(P;Q) false: False rev_implies:  Q not: ¬A iff: ⇐⇒ Q or: P ∨ Q decidable: Dec(P) lelt: i ≤ j < k int_seg: {i..j-} isl: isl(x) nat: and: P ∧ Q isr: isr(x) consistent-seq: R-consistent-seq(n) so_lambda: λ2x.t[x] btrue: tt cand: c∧ B bnot: ¬bb guard: {T} sq_type: SQType(T) exists: x:A. B[x] it: unit: Unit bool: 𝔹 seq-add: s.x@n sq_stable: SqStable(P) less_than: a < b
Lemmas referenced :  istype-universe subtype_rel_self cWO_wf basic_strong_bar_induction unit_wf2 int_seg_wf outl_wf le_wf le-add-cancel-alt zero-mul add-mul-special not-lt-2 decidable__lt le-add-cancel add-zero add_functionality_wrt_le add-commutes add-swap add-associates minus-minus istype-int minus-add nat_wf istype-void minus-one-mul-top zero-add minus-one-mul condition-implies-le less-iff-le not-le-2 istype-false decidable__le subtract_wf bfalse_wf btrue_wf assert_wf less_than_wf consistent-seq_wf all_wf decidable__assert decidable__and2 true_wf istype-less_than isl_wf not-equal-2 int_subtype_base set_subtype_base assert_of_bnot iff_weakening_uiff equal_wf not_wf bnot_wf iff_transitivity bool_subtype_base bool_wf subtype_base_sq bool_cases_sqequal eqff_to_assert assert_of_eq_int eqtt_to_assert eq_int_wf istype-assert seq-add_wf minus-zero le-add-cancel2 sq_stable__le add-subtract-cancel squash_wf iff_weakening_equal isr_wf
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity Error :isect_memberFormation_alt,  cut introduction sqequalRule sqequalHypSubstitution Error :lambdaEquality_alt,  dependent_functionElimination thin hypothesisEquality imageElimination hypothesis imageMemberEquality baseClosed Error :functionIsTypeImplies,  Error :inhabitedIsType,  rename Error :lambdaFormation_alt,  extract_by_obid isectElimination Error :functionIsType,  Error :setIsType,  Error :universeIsType,  applyEquality instantiate universeEquality setElimination because_Cache independent_functionElimination unionEquality Error :unionIsType,  Error :equalityIsType1,  Error :productIsType,  equalitySymmetry equalityTransitivity minusEquality Error :isect_memberEquality_alt,  addEquality independent_isectElimination voidElimination independent_pairFormation Error :dependent_set_memberEquality_alt,  productElimination unionElimination natural_numberEquality productEquality functionEquality setEquality closedConclusion voidEquality Error :inlEquality_alt,  multiplyEquality int_eqReduceFalseSq baseApply Error :equalityIsType4,  intEquality cumulativity promote_hyp Error :dependent_pairFormation_alt,  int_eqReduceTrueSq equalityElimination applyLambdaEquality hyp_replacement

Latex:
\mforall{}[T:Type].  \mforall{}[R:T  {}\mrightarrow{}  T  {}\mrightarrow{}  \mBbbP{}].    \mforall{}[Q:T  {}\mrightarrow{}  \mBbbP{}].  TI(T;x,y.R[x;y];t.Q[t])  supposing  cWO(T;x,y.R[x;y])



Date html generated: 2019_06_20-AM-11_29_48
Last ObjectModification: 2018_10_12-AM-11_32_44

Theory : bar-induction


Home Index