Nuprl Lemma : cWO_wf

[T:Type]. ∀[R:T ⟶ T ⟶ ℙ].  (cWO(T;x,y.R[x;y]) ∈ ℙ)


Proof




Definitions occuring in Statement :  cWO: cWO(T;x,y.R[x; y]) uall: [x:A]. B[x] prop: so_apply: x[s1;s2] member: t ∈ T function: x:A ⟶ B[x] universe: Type
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T cWO: cWO(T;x,y.R[x; y]) so_lambda: λ2x.t[x] so_apply: x[s1;s2] nat: all: x:A. B[x] decidable: Dec(P) or: P ∨ Q iff: ⇐⇒ Q and: P ∧ Q not: ¬A rev_implies:  Q implies:  Q false: False prop: uiff: uiff(P;Q) uimplies: supposing a sq_stable: SqStable(P) squash: T subtract: m subtype_rel: A ⊆B top: Top le: A ≤ B less_than': less_than'(a;b) true: True so_apply: x[s]
Lemmas referenced :  le_wf le-add-cancel add-zero add_functionality_wrt_le add-commutes add-swap add-associates minus-one-mul-top zero-add minus-one-mul minus-add condition-implies-le sq_stable__le not-le-2 false_wf decidable__le not_wf exists_wf squash_wf nat_wf all_wf
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation introduction cut sqequalRule lemma_by_obid sqequalHypSubstitution isectElimination thin functionEquality hypothesis cumulativity hypothesisEquality lambdaEquality because_Cache applyEquality dependent_set_memberEquality addEquality setElimination rename natural_numberEquality dependent_functionElimination unionElimination independent_pairFormation lambdaFormation voidElimination productElimination independent_functionElimination independent_isectElimination imageMemberEquality baseClosed imageElimination isect_memberEquality voidEquality intEquality minusEquality axiomEquality equalityTransitivity equalitySymmetry universeEquality

Latex:
\mforall{}[T:Type].  \mforall{}[R:T  {}\mrightarrow{}  T  {}\mrightarrow{}  \mBbbP{}].    (cWO(T;x,y.R[x;y])  \mmember{}  \mBbbP{})



Date html generated: 2016_05_13-PM-03_51_48
Last ObjectModification: 2016_01_14-PM-06_59_44

Theory : bar-induction


Home Index