Nuprl Lemma : canonical-function_wf

X:{X:Type| X ⊆Base} . ∀f:ℕ ⟶ X.  (canonical-function(f) ∈ {g:Base| f ∈ (ℕ ⟶ X)} )


Proof




Definitions occuring in Statement :  canonical-function: canonical-function(f) nat: subtype_rel: A ⊆B all: x:A. B[x] member: t ∈ T set: {x:A| B[x]}  function: x:A ⟶ B[x] base: Base universe: Type equal: t ∈ T
Definitions unfolded in proof :  all: x:A. B[x] member: t ∈ T uall: [x:A]. B[x] canonical-function: canonical-function(f) prop: has-value: (a)↓ and: P ∧ Q implies:  Q bool: 𝔹 unit: Unit it: btrue: tt uiff: uiff(P;Q) uimplies: supposing a less_than: a < b less_than': less_than'(a;b) top: Top true: True squash: T not: ¬A false: False bfalse: ff exists: x:A. B[x] or: P ∨ Q sq_type: SQType(T) guard: {T} bnot: ¬bb ifthenelse: if then else fi  assert: b iff: ⇐⇒ Q rev_implies:  Q nat: gt: i > j
Lemmas referenced :  nat_wf subtype_rel_wf base_wf equal-wf-base lt_int_wf eqtt_to_assert assert_of_lt_int istype-top istype-void bottom-sqle eqff_to_assert bool_cases_sqequal subtype_base_sq bool_subtype_base iff_transitivity assert_wf bnot_wf not_wf less_than_wf iff_weakening_uiff assert_of_bnot not-gt-2 le_wf has-value_wf_base is-exception_wf exception-not-value value-type-has-value int-value-type less_than_transitivity1 less_than_irreflexivity bool_wf
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity Error :lambdaFormation_alt,  cut setElimination thin rename sqequalHypSubstitution hypothesis Error :functionIsType,  Error :universeIsType,  introduction extract_by_obid hypothesisEquality Error :setIsType,  universeEquality isectElimination pointwiseFunctionality sqequalRule baseApply closedConclusion baseClosed because_Cache sqequalSqle divergentSqle callbyvalueLess productElimination Error :inhabitedIsType,  unionElimination equalityElimination equalityTransitivity equalitySymmetry independent_isectElimination lessCases Error :isect_memberFormation_alt,  axiomSqEquality Error :isect_memberEquality_alt,  independent_pairFormation voidElimination natural_numberEquality imageMemberEquality imageElimination independent_functionElimination Error :dependent_pairFormation_alt,  Error :equalityIsType2,  promote_hyp dependent_functionElimination instantiate applyEquality Error :dependent_set_memberEquality_alt,  Error :equalityIsType1,  cumulativity sqleReflexivity lessExceptionCases axiomSqleEquality intEquality exceptionSqequal functionExtensionality

Latex:
\mforall{}X:\{X:Type|  X  \msubseteq{}r  Base\}  .  \mforall{}f:\mBbbN{}  {}\mrightarrow{}  X.    (canonical-function(f)  \mmember{}  \{g:Base|  g  =  f\}  )



Date html generated: 2019_06_20-AM-11_28_10
Last ObjectModification: 2018_09_29-PM-11_20_57

Theory : call!by!value_2


Home Index