Nuprl Lemma : primrec-wf-nsub
∀[b:ℕ+]. ∀[P:ℕb ⟶ ℙ]. ∀[init:P[0]]. ∀[s:∀n:ℕb - 1. (P[n] ⇒ P[n + 1])]. ∀[n:ℕb].  (primrec(n;init;s) ∈ P[n])
Proof
Definitions occuring in Statement : 
primrec: primrec(n;b;c), 
int_seg: {i..j-}, 
nat_plus: ℕ+, 
uall: ∀[x:A]. B[x], 
prop: ℙ, 
so_apply: x[s], 
all: ∀x:A. B[x], 
implies: P ⇒ Q, 
member: t ∈ T, 
function: x:A ⟶ B[x], 
subtract: n - m, 
add: n + m, 
natural_number: $n
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x], 
member: t ∈ T, 
nat_plus: ℕ+, 
uimplies: b supposing a, 
int_seg: {i..j-}, 
and: P ∧ Q, 
less_than: a < b, 
squash: ↓T, 
cand: A c∧ B, 
lelt: i ≤ j < k, 
subtype_rel: A ⊆r B, 
so_lambda: λ2x.t[x], 
implies: P ⇒ Q, 
prop: ℙ, 
so_apply: x[s], 
le: A ≤ B, 
all: ∀x:A. B[x], 
decidable: Dec(P), 
or: P ∨ Q, 
iff: P ⇐⇒ Q, 
not: ¬A, 
rev_implies: P ⇐ Q, 
false: False, 
uiff: uiff(P;Q), 
subtract: n - m, 
top: Top, 
less_than': less_than'(a;b), 
true: True, 
sq_stable: SqStable(P)
Lemmas referenced : 
primrec-wf-int_seg, 
subtype_rel-equal, 
all_wf, 
int_seg_wf, 
subtract_wf, 
decidable__lt, 
istype-false, 
not-lt-2, 
less-iff-le, 
condition-implies-le, 
add-associates, 
istype-void, 
minus-add, 
minus-one-mul, 
add-swap, 
minus-one-mul-top, 
add_functionality_wrt_le, 
add-commutes, 
le-add-cancel2, 
istype-le, 
istype-less_than, 
add-member-int_seg2, 
decidable__le, 
not-le-2, 
zero-add, 
add-zero, 
add-member-int_seg1, 
minus-zero, 
sq_stable__le, 
le-add-cancel, 
nat_plus_wf
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
Error :isect_memberFormation_alt, 
introduction, 
cut, 
extract_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
thin, 
because_Cache, 
setElimination, 
rename, 
hypothesis, 
independent_isectElimination, 
independent_pairFormation, 
imageElimination, 
productElimination, 
hypothesisEquality, 
applyEquality, 
closedConclusion, 
natural_numberEquality, 
sqequalRule, 
Error :lambdaEquality_alt, 
functionEquality, 
Error :dependent_set_memberEquality_alt, 
dependent_functionElimination, 
unionElimination, 
Error :lambdaFormation_alt, 
voidElimination, 
independent_functionElimination, 
addEquality, 
minusEquality, 
Error :isect_memberEquality_alt, 
Error :productIsType, 
Error :universeIsType, 
imageMemberEquality, 
baseClosed, 
axiomEquality, 
equalityTransitivity, 
equalitySymmetry, 
Error :isectIsTypeImplies, 
Error :inhabitedIsType, 
Error :functionIsType, 
universeEquality
Latex:
\mforall{}[b:\mBbbN{}\msupplus{}].  \mforall{}[P:\mBbbN{}b  {}\mrightarrow{}  \mBbbP{}].  \mforall{}[init:P[0]].  \mforall{}[s:\mforall{}n:\mBbbN{}b  -  1.  (P[n]  {}\mRightarrow{}  P[n  +  1])].  \mforall{}[n:\mBbbN{}b].
    (primrec(n;init;s)  \mmember{}  P[n])
Date html generated:
2019_06_20-AM-11_27_37
Last ObjectModification:
2019_01_28-PM-05_24_18
Theory : call!by!value_2
Home
Index