Nuprl Lemma : Wless-Wadd

[A:Type]. ∀[B:A ⟶ Type].
  ∀zero:A ⟶ 𝔹((∀a:A. (¬↑(zero a) ⇐⇒ B[a]))  (∀w3,w2,w1:W(A;a.B[a]).  ((w2 <  w3)  ((w1 w2) <  (w1 w3)))))


Proof




Definitions occuring in Statement :  Wadd: (w1 w2) Wcmp: Wcmp(A;a.B[a];leq) W: W(A;a.B[a]) assert: b bfalse: ff bool: 𝔹 uall: [x:A]. B[x] infix_ap: y so_apply: x[s] all: x:A. B[x] iff: ⇐⇒ Q not: ¬A implies:  Q apply: a function: x:A ⟶ B[x] universe: Type
Definitions unfolded in proof :  uall: [x:A]. B[x] all: x:A. B[x] implies:  Q member: t ∈ T so_lambda: λ2x.t[x] so_apply: x[s] prop: subtype_rel: A ⊆B Wsup: Wsup(a;b) Wcmp: Wcmp(A;a.B[a];leq) infix_ap: y ifthenelse: if then else fi  bfalse: ff btrue: tt exists: x:A. B[x] Wadd: (w1 w2) bool: 𝔹 unit: Unit it: uiff: uiff(P;Q) and: P ∧ Q uimplies: supposing a iff: ⇐⇒ Q rev_implies:  Q not: ¬A false: False or: P ∨ Q sq_type: SQType(T) guard: {T} bnot: ¬bb assert: b
Lemmas referenced :  W-induction all_wf W_wf infix_ap_wf Wcmp_wf bfalse_wf Wadd_wf Wsup_wf bool_wf eqtt_to_assert eqff_to_assert equal_wf bool_cases_sqequal subtype_base_sq bool_subtype_base assert-bnot Wleq-Wadd3 btrue_wf iff_wf not_wf assert_wf
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation lambdaFormation cut introduction extract_by_obid sqequalHypSubstitution isectElimination thin hypothesisEquality sqequalRule lambdaEquality applyEquality functionExtensionality cumulativity because_Cache hypothesis functionEquality instantiate universeEquality independent_functionElimination productElimination unionElimination equalityElimination equalityTransitivity equalitySymmetry independent_isectElimination dependent_functionElimination voidElimination dependent_pairFormation promote_hyp

Latex:
\mforall{}[A:Type].  \mforall{}[B:A  {}\mrightarrow{}  Type].
    \mforall{}zero:A  {}\mrightarrow{}  \mBbbB{}
        ((\mforall{}a:A.  (\mneg{}\muparrow{}(zero  a)  \mLeftarrow{}{}\mRightarrow{}  B[a]))
        {}\mRightarrow{}  (\mforall{}w3,w2,w1:W(A;a.B[a]).    ((w2  <    w3)  {}\mRightarrow{}  ((w1  +  w2)  <    (w1  +  w3)))))



Date html generated: 2017_04_14-AM-07_44_39
Last ObjectModification: 2017_02_27-PM-03_15_53

Theory : co-recursion


Home Index