Nuprl Lemma : Wleq-Wadd3

[A:Type]. ∀[B:A ⟶ Type].  ∀zero:A ⟶ 𝔹((∀a:A. (¬↑(zero a) ⇐⇒ B[a]))  (∀w1,w2:W(A;a.B[a]).  (w1 ≤  (w1 w2))))


Proof




Definitions occuring in Statement :  Wadd: (w1 w2) Wcmp: Wcmp(A;a.B[a];leq) W: W(A;a.B[a]) assert: b btrue: tt bool: 𝔹 uall: [x:A]. B[x] infix_ap: y so_apply: x[s] all: x:A. B[x] iff: ⇐⇒ Q not: ¬A implies:  Q apply: a function: x:A ⟶ B[x] universe: Type
Definitions unfolded in proof :  uall: [x:A]. B[x] all: x:A. B[x] implies:  Q member: t ∈ T so_lambda: λ2x.t[x] so_apply: x[s] subtype_rel: A ⊆B prop: Wsup: Wsup(a;b) Wcmp: Wcmp(A;a.B[a];leq) infix_ap: y ifthenelse: if then else fi  btrue: tt Wadd: (w1 w2) bool: 𝔹 unit: Unit it: uiff: uiff(P;Q) and: P ∧ Q uimplies: supposing a bfalse: ff exists: x:A. B[x] or: P ∨ Q sq_type: SQType(T) guard: {T} bnot: ¬bb assert: b false: False iff: ⇐⇒ Q
Lemmas referenced :  W-induction all_wf W_wf infix_ap_wf Wcmp_wf btrue_wf Wadd_wf bfalse_wf Wsup_wf bool_wf eqtt_to_assert eqff_to_assert equal_wf bool_cases_sqequal subtype_base_sq bool_subtype_base assert-bnot iff_wf not_wf assert_wf Wleq_weakening2 Wleq_weakening
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation lambdaFormation cut introduction extract_by_obid sqequalHypSubstitution isectElimination thin hypothesisEquality sqequalRule lambdaEquality applyEquality functionExtensionality cumulativity because_Cache hypothesis instantiate universeEquality independent_functionElimination unionElimination equalityElimination equalityTransitivity equalitySymmetry productElimination independent_isectElimination dependent_pairFormation promote_hyp dependent_functionElimination voidElimination functionEquality rename

Latex:
\mforall{}[A:Type].  \mforall{}[B:A  {}\mrightarrow{}  Type].
    \mforall{}zero:A  {}\mrightarrow{}  \mBbbB{}.  ((\mforall{}a:A.  (\mneg{}\muparrow{}(zero  a)  \mLeftarrow{}{}\mRightarrow{}  B[a]))  {}\mRightarrow{}  (\mforall{}w1,w2:W(A;a.B[a]).    (w1  \mleq{}    (w1  +  w2))))



Date html generated: 2017_04_14-AM-07_44_30
Last ObjectModification: 2017_02_27-PM-03_15_47

Theory : co-recursion


Home Index