Nuprl Lemma : Wmul-Wzero

[A:Type]. ∀[B:A ⟶ Type]. ∀[zero,succ:A ⟶ 𝔹].
  ∀[z:W(A;a.B[a])]. ∀[w1:W(A;a.B[a])]. ((w1 z) z ∈ W(A;a.B[a])) supposing isZero(z) 
  supposing ∀a:A. ((↑(succ a))  (Unit ⊆B[a]))


Proof




Definitions occuring in Statement :  Wmul: (w1 w2) Wzero: isZero(w) W: W(A;a.B[a]) assert: b bool: 𝔹 uimplies: supposing a subtype_rel: A ⊆B uall: [x:A]. B[x] so_apply: x[s] all: x:A. B[x] implies:  Q unit: Unit apply: a function: x:A ⟶ B[x] universe: Type equal: t ∈ T
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T uimplies: supposing a so_lambda: λ2x.t[x] so_apply: x[s] implies:  Q prop: all: x:A. B[x] Wsup: Wsup(a;b) Wzero: isZero(w) pi1: fst(t) Wmul: (w1 w2) bool: 𝔹 unit: Unit it: btrue: tt uiff: uiff(P;Q) and: P ∧ Q ifthenelse: if then else fi  not: ¬A subtype_rel: A ⊆B false: False bfalse: ff exists: x:A. B[x] or: P ∨ Q sq_type: SQType(T) guard: {T} bnot: ¬bb assert: b squash: T true: True
Lemmas referenced :  W-induction Wzero_wf all_wf W_wf equal_wf Wmul_wf bool_wf eqtt_to_assert it_wf eqff_to_assert bool_cases_sqequal subtype_base_sq bool_subtype_base assert-bnot Wsup_wf squash_wf true_wf not_wf assert_wf subtype_rel_wf unit_wf2
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation introduction cut thin extract_by_obid sqequalHypSubstitution isectElimination hypothesisEquality sqequalRule lambdaEquality applyEquality functionExtensionality cumulativity functionEquality because_Cache hypothesis independent_isectElimination independent_functionElimination lambdaFormation unionElimination equalityElimination equalityTransitivity equalitySymmetry productElimination dependent_functionElimination voidElimination dependent_pairFormation promote_hyp instantiate imageElimination natural_numberEquality imageMemberEquality baseClosed isect_memberEquality axiomEquality universeEquality

Latex:
\mforall{}[A:Type].  \mforall{}[B:A  {}\mrightarrow{}  Type].  \mforall{}[zero,succ:A  {}\mrightarrow{}  \mBbbB{}].
    \mforall{}[z:W(A;a.B[a])].  \mforall{}[w1:W(A;a.B[a])].  ((w1  *  z)  =  z)  supposing  isZero(z) 
    supposing  \mforall{}a:A.  ((\muparrow{}(succ  a))  {}\mRightarrow{}  (Unit  \msubseteq{}r  B[a]))



Date html generated: 2017_04_14-AM-07_45_01
Last ObjectModification: 2017_02_27-PM-03_15_43

Theory : co-recursion


Home Index