Nuprl Lemma : Wmul_wf
∀[A:Type]. ∀[B:A ⟶ Type]. ∀[zero,succ:A ⟶ 𝔹]. ∀[w2,w1:W(A;a.B[a])].
  (w1 * w2) ∈ W(A;a.B[a]) supposing ∀a:A. ((↑(succ a)) 
⇒ (Unit ⊆r B[a]))
Proof
Definitions occuring in Statement : 
Wmul: (w1 * w2)
, 
W: W(A;a.B[a])
, 
assert: ↑b
, 
bool: 𝔹
, 
uimplies: b supposing a
, 
subtype_rel: A ⊆r B
, 
uall: ∀[x:A]. B[x]
, 
so_apply: x[s]
, 
all: ∀x:A. B[x]
, 
implies: P 
⇒ Q
, 
unit: Unit
, 
member: t ∈ T
, 
apply: f a
, 
function: x:A ⟶ B[x]
, 
universe: Type
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
uimplies: b supposing a
, 
prop: ℙ
, 
so_lambda: λ2x.t[x]
, 
so_apply: x[s]
, 
implies: P 
⇒ Q
, 
Wmul: (w1 * w2)
, 
Wsup: Wsup(a;b)
, 
all: ∀x:A. B[x]
, 
exposed-it: exposed-it
, 
bool: 𝔹
, 
unit: Unit
, 
it: ⋅
, 
btrue: tt
, 
uiff: uiff(P;Q)
, 
and: P ∧ Q
, 
ifthenelse: if b then t else f fi 
, 
subtype_rel: A ⊆r B
, 
bfalse: ff
, 
exists: ∃x:A. B[x]
, 
or: P ∨ Q
, 
sq_type: SQType(T)
, 
guard: {T}
, 
bnot: ¬bb
, 
assert: ↑b
, 
false: False
, 
nat: ℕ
, 
pcw-pp-barred: Barred(pp)
, 
int_seg: {i..j-}
, 
lelt: i ≤ j < k
, 
decidable: Dec(P)
, 
iff: P 
⇐⇒ Q
, 
not: ¬A
, 
rev_implies: P 
⇐ Q
, 
subtract: n - m
, 
top: Top
, 
le: A ≤ B
, 
less_than': less_than'(a;b)
, 
true: True
, 
cw-step: cw-step(A;a.B[a])
, 
pcw-step: pcw-step(P;p.A[p];p,a.B[p; a];p,a,b.C[p; a; b])
, 
spreadn: spread3, 
less_than: a < b
, 
squash: ↓T
, 
isr: isr(x)
, 
ext-eq: A ≡ B
, 
so_lambda: λ2x y.t[x; y]
, 
so_apply: x[s1;s2]
, 
so_lambda: so_lambda(x,y,z.t[x; y; z])
, 
so_apply: x[s1;s2;s3]
, 
ext-family: F ≡ G
, 
pi1: fst(t)
, 
nat_plus: ℕ+
, 
W-rel: W-rel(A;a.B[a];w)
, 
param-W-rel: param-W-rel(P;p.A[p];p,a.B[p; a];p,a,b.C[p; a; b];par;w)
, 
pcw-steprel: StepRel(s1;s2)
, 
pi2: snd(t)
, 
isl: isl(x)
, 
pcw-step-agree: StepAgree(s;p1;w)
, 
cand: A c∧ B
, 
sq_stable: SqStable(P)
Lemmas referenced : 
W_wf, 
bool_wf, 
all_wf, 
assert_wf, 
subtype_rel_wf, 
unit_wf2, 
eqtt_to_assert, 
Wadd_wf, 
it_wf, 
eqff_to_assert, 
equal_wf, 
bool_cases_sqequal, 
subtype_base_sq, 
bool_subtype_base, 
assert-bnot, 
Wsup_wf, 
W-elimination-facts, 
int_seg_wf, 
subtract_wf, 
decidable__le, 
false_wf, 
not-le-2, 
less-iff-le, 
condition-implies-le, 
minus-one-mul, 
zero-add, 
minus-one-mul-top, 
nat_wf, 
minus-add, 
minus-minus, 
add-associates, 
add-swap, 
add-commutes, 
add_functionality_wrt_le, 
add-zero, 
le-add-cancel, 
decidable__lt, 
not-lt-2, 
add-mul-special, 
zero-mul, 
le-add-cancel-alt, 
lelt_wf, 
top_wf, 
less_than_wf, 
true_wf, 
add-subtract-cancel, 
W-ext, 
param-co-W-ext, 
param-co-W_wf, 
ext-eq_inversion, 
subtype_rel_weakening, 
btrue_wf, 
bfalse_wf, 
pcw-steprel_wf, 
subtype_rel_dep_function, 
set_subtype_base, 
le_wf, 
int_subtype_base, 
decidable__int_equal, 
not-equal-2, 
minus-zero, 
le-add-cancel2, 
int_seg_subtype, 
sq_stable__le
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation, 
introduction, 
cut, 
sqequalRule, 
sqequalHypSubstitution, 
isect_memberEquality, 
isectElimination, 
thin, 
hypothesisEquality, 
axiomEquality, 
equalityTransitivity, 
hypothesis, 
equalitySymmetry, 
because_Cache, 
extract_by_obid, 
cumulativity, 
lambdaEquality, 
applyEquality, 
functionExtensionality, 
functionEquality, 
universeEquality, 
lambdaFormation, 
unionElimination, 
equalityElimination, 
productElimination, 
independent_isectElimination, 
dependent_functionElimination, 
independent_functionElimination, 
dependent_pairFormation, 
promote_hyp, 
instantiate, 
voidElimination, 
strong_bar_Induction, 
natural_numberEquality, 
setElimination, 
rename, 
dependent_set_memberEquality, 
independent_pairFormation, 
addEquality, 
voidEquality, 
minusEquality, 
intEquality, 
lessCases, 
sqequalAxiom, 
imageMemberEquality, 
baseClosed, 
imageElimination, 
int_eqReduceTrueSq, 
hypothesis_subsumption, 
dependent_pairEquality, 
productEquality, 
inlEquality, 
unionEquality, 
hyp_replacement, 
applyLambdaEquality
Latex:
\mforall{}[A:Type].  \mforall{}[B:A  {}\mrightarrow{}  Type].  \mforall{}[zero,succ:A  {}\mrightarrow{}  \mBbbB{}].  \mforall{}[w2,w1:W(A;a.B[a])].
    (w1  *  w2)  \mmember{}  W(A;a.B[a])  supposing  \mforall{}a:A.  ((\muparrow{}(succ  a))  {}\mRightarrow{}  (Unit  \msubseteq{}r  B[a]))
Date html generated:
2017_04_14-AM-07_44_51
Last ObjectModification:
2017_02_27-PM-03_16_13
Theory : co-recursion
Home
Index