Nuprl Lemma : b-almost-full-filter
∀A,B:ℕ ⟶ ℕ ⟶ ℙ.
  ((b-almost-full(n,m.A[n;m]) ⇒ b-almost-full(n,m.B[n;m]) ⇒ b-almost-full(n,m.A[n;m] ∧ B[n;m]))
  ∧ ((∀n,m:ℕ.  (A[n;m] ⇒ B[n;m])) ⇒ b-almost-full(n,m.A[n;m]) ⇒ b-almost-full(n,m.B[n;m]))
  ∧ b-almost-full(n,m.True))
Proof
Definitions occuring in Statement : 
b-almost-full: b-almost-full(n,m.R[n; m]), 
nat: ℕ, 
prop: ℙ, 
so_apply: x[s1;s2], 
all: ∀x:A. B[x], 
implies: P ⇒ Q, 
and: P ∧ Q, 
true: True, 
function: x:A ⟶ B[x]
Definitions unfolded in proof : 
all: ∀x:A. B[x], 
and: P ∧ Q, 
cand: A c∧ B, 
implies: P ⇒ Q, 
member: t ∈ T, 
prop: ℙ, 
uall: ∀[x:A]. B[x], 
so_lambda: λ2x y.t[x; y], 
so_apply: x[s1;s2], 
so_lambda: λ2x.t[x], 
so_apply: x[s], 
b-almost-full: b-almost-full(n,m.R[n; m]), 
nat: ℕ, 
strict-inc: StrictInc, 
subtype_rel: A ⊆r B, 
guard: {T}, 
int_upper: {i...}, 
ge: i ≥ j , 
decidable: Dec(P), 
or: P ∨ Q, 
uimplies: b supposing a, 
satisfiable_int_formula: satisfiable_int_formula(fmla), 
exists: ∃x:A. B[x], 
false: False, 
not: ¬A, 
top: Top, 
le: A ≤ B, 
less_than': less_than'(a;b), 
true: True
Lemmas referenced : 
quotient-member-eq, 
false_wf, 
equiv_rel_true, 
true_wf, 
strict-inc_wf, 
int_formula_prop_wf, 
int_term_value_var_lemma, 
int_term_value_add_lemma, 
int_term_value_constant_lemma, 
int_formula_prop_le_lemma, 
int_formula_prop_not_lemma, 
int_formula_prop_and_lemma, 
itermVar_wf, 
itermAdd_wf, 
itermConstant_wf, 
intformle_wf, 
intformnot_wf, 
intformand_wf, 
satisfiable-full-omega-tt, 
decidable__le, 
nat_properties, 
le_wf, 
int_upper_properties, 
int_upper_subtype_nat, 
int_upper_wf, 
exists_wf, 
implies-quotient-true, 
intuitionistic-Ramsey, 
all_wf, 
nat_wf, 
b-almost-full_wf
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
lambdaFormation, 
cut, 
lemma_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
thin, 
sqequalRule, 
lambdaEquality, 
applyEquality, 
hypothesisEquality, 
hypothesis, 
independent_pairFormation, 
independent_functionElimination, 
because_Cache, 
functionEquality, 
cumulativity, 
universeEquality, 
dependent_functionElimination, 
addEquality, 
setElimination, 
rename, 
natural_numberEquality, 
dependent_set_memberEquality, 
setEquality, 
intEquality, 
unionElimination, 
independent_isectElimination, 
dependent_pairFormation, 
int_eqEquality, 
isect_memberEquality, 
voidElimination, 
voidEquality, 
computeAll, 
productElimination, 
introduction, 
dependent_pairEquality, 
axiomEquality
Latex:
\mforall{}A,B:\mBbbN{}  {}\mrightarrow{}  \mBbbN{}  {}\mrightarrow{}  \mBbbP{}.
    ((b-almost-full(n,m.A[n;m])  {}\mRightarrow{}  b-almost-full(n,m.B[n;m])  {}\mRightarrow{}  b-almost-full(n,m.A[n;m]  \mwedge{}  B[n;m]))
    \mwedge{}  ((\mforall{}n,m:\mBbbN{}.    (A[n;m]  {}\mRightarrow{}  B[n;m]))  {}\mRightarrow{}  b-almost-full(n,m.A[n;m])  {}\mRightarrow{}  b-almost-full(n,m.B[n;m]))
    \mwedge{}  b-almost-full(n,m.True))
Date html generated:
2016_05_14-PM-09_53_53
Last ObjectModification:
2016_01_15-PM-10_56_04
Theory : continuity
Home
Index