Nuprl Lemma : decidable-bar-rec_wf2
∀[B,Q:n:ℕ ⟶ (ℕn ⟶ ℕ) ⟶ ℙ]. ∀[bar:∀s:ℕ ⟶ ℕ. (↓∃n:ℕ. B[n;s])]. ∀[dec:∀n:ℕ. ∀s:ℕn ⟶ ℕ.  (B[n;s] ∨ (¬B[n;s]))].
∀[base:∀n:ℕ. ∀s:ℕn ⟶ ℕ.  (B[n;s] 
⇒ Q[n;s])]. ∀[ind:∀n:ℕ. ∀s:ℕn ⟶ ℕ.  ((∀m:ℕ. Q[n + 1;s.m@n]) 
⇒ Q[n;s])]. ∀[n:ℕ].
∀[s:ℕn ⟶ ℕ].
  (decidable-bar-rec(dec;base;ind;0;seq-normalize(0;⊥)) ∈ Q[0;seq-normalize(0;⊥)])
Proof
Definitions occuring in Statement : 
decidable-bar-rec: decidable-bar-rec(dec;base;ind;n;s)
, 
seq-normalize: seq-normalize(n;s)
, 
seq-add: s.x@n
, 
int_seg: {i..j-}
, 
nat: ℕ
, 
bottom: ⊥
, 
uall: ∀[x:A]. B[x]
, 
prop: ℙ
, 
so_apply: x[s1;s2]
, 
all: ∀x:A. B[x]
, 
exists: ∃x:A. B[x]
, 
not: ¬A
, 
squash: ↓T
, 
implies: P 
⇒ Q
, 
or: P ∨ Q
, 
member: t ∈ T
, 
function: x:A ⟶ B[x]
, 
add: n + m
, 
natural_number: $n
Definitions unfolded in proof : 
less_than': less_than'(a;b)
, 
le: A ≤ B
, 
subtype_rel: A ⊆r B
, 
and: P ∧ Q
, 
prop: ℙ
, 
top: Top
, 
false: False
, 
exists: ∃x:A. B[x]
, 
satisfiable_int_formula: satisfiable_int_formula(fmla)
, 
not: ¬A
, 
uimplies: b supposing a
, 
or: P ∨ Q
, 
decidable: Dec(P)
, 
ge: i ≥ j 
, 
so_apply: x[s1;s2]
, 
implies: P 
⇒ Q
, 
all: ∀x:A. B[x]
, 
nat: ℕ
, 
member: t ∈ T
, 
uall: ∀[x:A]. B[x]
, 
squash: ↓T
, 
int_seg: {i..j-}
, 
lelt: i ≤ j < k
, 
guard: {T}
, 
true: True
, 
iff: P 
⇐⇒ Q
, 
rev_implies: P 
⇐ Q
, 
decidable-bar-rec: decidable-bar-rec(dec;base;ind;n;s)
, 
seq-add: s.x@n
Lemmas referenced : 
subtype_rel_self, 
istype-false, 
int_seg_subtype_nat, 
subtype_rel_function, 
squash_wf, 
nat_wf, 
seq-add_wf, 
istype-le, 
int_formula_prop_le_lemma, 
int_formula_prop_and_lemma, 
intformle_wf, 
intformand_wf, 
decidable__le, 
int_formula_prop_wf, 
int_term_value_constant_lemma, 
int_term_value_var_lemma, 
int_term_value_add_lemma, 
int_formula_prop_eq_lemma, 
istype-void, 
int_formula_prop_not_lemma, 
istype-int, 
itermConstant_wf, 
itermVar_wf, 
itermAdd_wf, 
intformeq_wf, 
intformnot_wf, 
full-omega-unsat, 
decidable__equal_int, 
nat_properties, 
istype-nat, 
int_seg_wf, 
seq-normalize_wf, 
int_seg_properties, 
equal_wf, 
true_wf, 
istype-universe, 
seq-normalize-equal, 
iff_weakening_equal, 
not_wf
Rules used in proof : 
universeEquality, 
Error :lambdaFormation_alt, 
productEquality, 
Error :unionIsType, 
independent_pairFormation, 
Error :dependent_set_memberEquality_alt, 
voidElimination, 
int_eqEquality, 
Error :lambdaEquality_alt, 
Error :dependent_pairFormation_alt, 
independent_functionElimination, 
approximateComputation, 
independent_isectElimination, 
unionElimination, 
addEquality, 
dependent_functionElimination, 
applyEquality, 
because_Cache, 
Error :isectIsTypeImplies, 
Error :isect_memberEquality_alt, 
Error :inhabitedIsType, 
hypothesisEquality, 
rename, 
setElimination, 
natural_numberEquality, 
thin, 
isectElimination, 
extract_by_obid, 
Error :universeIsType, 
Error :functionIsType, 
equalitySymmetry, 
equalityTransitivity, 
axiomEquality, 
sqequalRule, 
hypothesis, 
sqequalHypSubstitution, 
cut, 
introduction, 
Error :isect_memberFormation_alt, 
sqequalReflexivity, 
computationStep, 
sqequalTransitivity, 
sqequalSubstitution, 
imageElimination, 
SquashedBarInduction, 
instantiate, 
productElimination, 
imageMemberEquality, 
baseClosed, 
Error :functionExtensionality_alt, 
applyLambdaEquality, 
intEquality, 
functionExtensionality, 
functionEquality, 
unionEquality, 
Error :equalityIstype
Latex:
\mforall{}[B,Q:n:\mBbbN{}  {}\mrightarrow{}  (\mBbbN{}n  {}\mrightarrow{}  \mBbbN{})  {}\mrightarrow{}  \mBbbP{}].  \mforall{}[bar:\mforall{}s:\mBbbN{}  {}\mrightarrow{}  \mBbbN{}.  (\mdownarrow{}\mexists{}n:\mBbbN{}.  B[n;s])].  \mforall{}[dec:\mforall{}n:\mBbbN{}.  \mforall{}s:\mBbbN{}n  {}\mrightarrow{}  \mBbbN{}.
                                                                                                                                                  (B[n;s]  \mvee{}  (\mneg{}B[n;s]))].
\mforall{}[base:\mforall{}n:\mBbbN{}.  \mforall{}s:\mBbbN{}n  {}\mrightarrow{}  \mBbbN{}.    (B[n;s]  {}\mRightarrow{}  Q[n;s])].  \mforall{}[ind:\mforall{}n:\mBbbN{}.  \mforall{}s:\mBbbN{}n  {}\mrightarrow{}  \mBbbN{}.
                                                                                                              ((\mforall{}m:\mBbbN{}.  Q[n  +  1;s.m@n])  {}\mRightarrow{}  Q[n;s])].  \mforall{}[n:\mBbbN{}].
\mforall{}[s:\mBbbN{}n  {}\mrightarrow{}  \mBbbN{}].
    (decidable-bar-rec(dec;base;ind;0;seq-normalize(0;\mbot{}))  \mmember{}  Q[0;seq-normalize(0;\mbot{})])
Date html generated:
2019_06_20-PM-03_05_26
Last ObjectModification:
2019_01_17-AM-09_04_18
Theory : continuity
Home
Index