Nuprl Lemma : increasing-baire-eq-from

a:ℕ ⟶ ℕ. ∀k:ℕ.  (increasing-sequence(a)  increasing-sequence(baire_eq_from(a;k)))


Proof




Definitions occuring in Statement :  baire_eq_from: baire_eq_from(a;k) increasing-sequence: increasing-sequence(a) nat: all: x:A. B[x] implies:  Q function: x:A ⟶ B[x]
Definitions unfolded in proof :  so_apply: x[s] so_lambda: λ2x.t[x] subtype_rel: A ⊆B decidable: Dec(P) top: Top satisfiable_int_formula: satisfiable_int_formula(fmla) ge: i ≥  not: ¬A false: False assert: b bnot: ¬bb guard: {T} sq_type: SQType(T) or: P ∨ Q prop: exists: x:A. B[x] bfalse: ff ifthenelse: if then else fi  uimplies: supposing a and: P ∧ Q uiff: uiff(P;Q) btrue: tt it: unit: Unit bool: 𝔹 nat: uall: [x:A]. B[x] member: t ∈ T baire_eq_from: baire_eq_from(a;k) increasing-sequence: increasing-sequence(a) implies:  Q all: x:A. B[x]
Lemmas referenced :  int_subtype_base set_subtype_base decidable__equal_int increasing-sequence_wf int_formula_prop_le_lemma intformle_wf decidable__le int_formula_prop_eq_lemma intformeq_wf le_wf nat_wf decidable__equal_nat int_formula_prop_wf int_formula_prop_not_lemma int_term_value_constant_lemma int_term_value_var_lemma int_term_value_add_lemma int_formula_prop_less_lemma int_formula_prop_and_lemma intformnot_wf itermConstant_wf itermVar_wf itermAdd_wf intformless_wf intformand_wf satisfiable-full-omega-tt nat_properties less_than_wf assert-bnot bool_subtype_base subtype_base_sq bool_cases_sqequal equal_wf eqff_to_assert assert_of_lt_int eqtt_to_assert bool_wf lt_int_wf
Rules used in proof :  functionEquality applyLambdaEquality dependent_set_memberEquality functionExtensionality applyEquality inlFormation computeAll independent_pairFormation voidEquality isect_memberEquality intEquality int_eqEquality lambdaEquality voidElimination independent_functionElimination cumulativity instantiate dependent_functionElimination promote_hyp dependent_pairFormation because_Cache independent_isectElimination productElimination equalitySymmetry equalityTransitivity equalityElimination unionElimination natural_numberEquality hypothesis hypothesisEquality rename setElimination addEquality thin isectElimination sqequalHypSubstitution extract_by_obid introduction cut sqequalRule lambdaFormation sqequalReflexivity computationStep sqequalTransitivity sqequalSubstitution

Latex:
\mforall{}a:\mBbbN{}  {}\mrightarrow{}  \mBbbN{}.  \mforall{}k:\mBbbN{}.    (increasing-sequence(a)  {}\mRightarrow{}  increasing-sequence(baire\_eq\_from(a;k)))



Date html generated: 2017_04_21-AM-11_24_27
Last ObjectModification: 2017_04_20-PM-06_44_58

Theory : continuity


Home Index