Nuprl Lemma : intuitionistic-pigeonhole

A,B:ℕ ⟶ ℙ.
  ((∀s:StrictInc. ⇃(∃n:ℕA[s n]))  (∀s:StrictInc. ⇃(∃n:ℕB[s n]))  (∀s:StrictInc. ⇃(∃n:ℕ(A[s n] ∧ B[s n]))))


Proof




Definitions occuring in Statement :  strict-inc: StrictInc quotient: x,y:A//B[x; y] nat: prop: so_apply: x[s] all: x:A. B[x] exists: x:A. B[x] implies:  Q and: P ∧ Q true: True apply: a function: x:A ⟶ B[x]
Definitions unfolded in proof :  all: x:A. B[x] implies:  Q so_lambda: λ2x.t[x] member: t ∈ T so_apply: x[s] strict-inc: StrictInc prop: uall: [x:A]. B[x] exists: x:A. B[x] so_lambda: λ2y.t[x; y] so_apply: x[s1;s2] uimplies: supposing a compose: g nat: subtype_rel: A ⊆B guard: {T} cand: c∧ B and: P ∧ Q
Lemmas referenced :  two-implies-quotient-true and_wf implies-quotient-true canonicalizable-nat-to-nat less_than_wf int_seg_wf canonicalizable-set canonicalizable_wf trivial-quotient-true axiom-choice-quot compose-strict-inc equiv_rel_true true_wf exists_wf quotient_wf all_wf strict-inc_wf nat_wf unary-almost-full-has-strict-inc
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity lambdaFormation cut lemma_by_obid sqequalHypSubstitution dependent_functionElimination thin sqequalRule lambdaEquality applyEquality hypothesisEquality setElimination rename hypothesis independent_functionElimination because_Cache isectElimination independent_isectElimination functionEquality cumulativity universeEquality natural_numberEquality productElimination dependent_pairFormation independent_pairFormation

Latex:
\mforall{}A,B:\mBbbN{}  {}\mrightarrow{}  \mBbbP{}.
    ((\mforall{}s:StrictInc.  \00D9(\mexists{}n:\mBbbN{}.  A[s  n]))
    {}\mRightarrow{}  (\mforall{}s:StrictInc.  \00D9(\mexists{}n:\mBbbN{}.  B[s  n]))
    {}\mRightarrow{}  (\mforall{}s:StrictInc.  \00D9(\mexists{}n:\mBbbN{}.  (A[s  n]  \mwedge{}  B[s  n]))))



Date html generated: 2016_05_14-PM-09_48_45
Last ObjectModification: 2016_01_06-PM-09_29_05

Theory : continuity


Home Index