Nuprl Lemma : intuitionistic-pigeonhole
∀A,B:ℕ ⟶ ℙ.
  ((∀s:StrictInc. ⇃(∃n:ℕ. A[s n])) 
⇒ (∀s:StrictInc. ⇃(∃n:ℕ. B[s n])) 
⇒ (∀s:StrictInc. ⇃(∃n:ℕ. (A[s n] ∧ B[s n]))))
Proof
Definitions occuring in Statement : 
strict-inc: StrictInc
, 
quotient: x,y:A//B[x; y]
, 
nat: ℕ
, 
prop: ℙ
, 
so_apply: x[s]
, 
all: ∀x:A. B[x]
, 
exists: ∃x:A. B[x]
, 
implies: P 
⇒ Q
, 
and: P ∧ Q
, 
true: True
, 
apply: f a
, 
function: x:A ⟶ B[x]
Definitions unfolded in proof : 
all: ∀x:A. B[x]
, 
implies: P 
⇒ Q
, 
so_lambda: λ2x.t[x]
, 
member: t ∈ T
, 
so_apply: x[s]
, 
strict-inc: StrictInc
, 
prop: ℙ
, 
uall: ∀[x:A]. B[x]
, 
exists: ∃x:A. B[x]
, 
so_lambda: λ2x y.t[x; y]
, 
so_apply: x[s1;s2]
, 
uimplies: b supposing a
, 
compose: f o g
, 
nat: ℕ
, 
subtype_rel: A ⊆r B
, 
guard: {T}
, 
cand: A c∧ B
, 
and: P ∧ Q
Lemmas referenced : 
two-implies-quotient-true, 
and_wf, 
implies-quotient-true, 
canonicalizable-nat-to-nat, 
less_than_wf, 
int_seg_wf, 
canonicalizable-set, 
canonicalizable_wf, 
trivial-quotient-true, 
axiom-choice-quot, 
compose-strict-inc, 
equiv_rel_true, 
true_wf, 
exists_wf, 
quotient_wf, 
all_wf, 
strict-inc_wf, 
nat_wf, 
unary-almost-full-has-strict-inc
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
lambdaFormation, 
cut, 
lemma_by_obid, 
sqequalHypSubstitution, 
dependent_functionElimination, 
thin, 
sqequalRule, 
lambdaEquality, 
applyEquality, 
hypothesisEquality, 
setElimination, 
rename, 
hypothesis, 
independent_functionElimination, 
because_Cache, 
isectElimination, 
independent_isectElimination, 
functionEquality, 
cumulativity, 
universeEquality, 
natural_numberEquality, 
productElimination, 
dependent_pairFormation, 
independent_pairFormation
Latex:
\mforall{}A,B:\mBbbN{}  {}\mrightarrow{}  \mBbbP{}.
    ((\mforall{}s:StrictInc.  \00D9(\mexists{}n:\mBbbN{}.  A[s  n]))
    {}\mRightarrow{}  (\mforall{}s:StrictInc.  \00D9(\mexists{}n:\mBbbN{}.  B[s  n]))
    {}\mRightarrow{}  (\mforall{}s:StrictInc.  \00D9(\mexists{}n:\mBbbN{}.  (A[s  n]  \mwedge{}  B[s  n]))))
Date html generated:
2016_05_14-PM-09_48_45
Last ObjectModification:
2016_01_06-PM-09_29_05
Theory : continuity
Home
Index