Nuprl Lemma : weak-Markov-principle2-alt
∀a:ℕ*. ((∀c:ℕ*. ((¬(a = c ∈ ℕ*)) ∨ (¬(0 = c ∈ ℕ*)))) 
⇒ (∃n:ℕ. 0 < a n))
Proof
Definitions occuring in Statement : 
nat-star-0: 0
, 
nat-star: ℕ*
, 
nat: ℕ
, 
less_than: a < b
, 
all: ∀x:A. B[x]
, 
exists: ∃x:A. B[x]
, 
not: ¬A
, 
implies: P 
⇒ Q
, 
or: P ∨ Q
, 
apply: f a
, 
natural_number: $n
, 
equal: s = t ∈ T
Definitions unfolded in proof : 
nat-star-0: 0
, 
guard: {T}
, 
so_apply: x[s]
, 
so_lambda: λ2x.t[x]
, 
subtype_rel: A ⊆r B
, 
prop: ℙ
, 
and: P ∧ Q
, 
top: Top
, 
false: False
, 
satisfiable_int_formula: satisfiable_int_formula(fmla)
, 
uimplies: b supposing a
, 
ge: i ≥ j 
, 
nat: ℕ
, 
uall: ∀[x:A]. B[x]
, 
exists: ∃x:A. B[x]
, 
decidable: Dec(P)
, 
nat-star: ℕ*
, 
not: ¬A
, 
or: P ∨ Q
, 
implies: P 
⇒ Q
, 
member: t ∈ T
, 
all: ∀x:A. B[x]
Lemmas referenced : 
int_formula_prop_le_lemma, 
intformle_wf, 
decidable__le, 
int_term_value_constant_lemma, 
itermConstant_wf, 
or_wf, 
nat-star_wf, 
nat-star-0_wf, 
equal-wf-base-T, 
exists_wf, 
less_than_wf, 
all_wf, 
not_wf, 
equal_wf, 
int_formula_prop_wf, 
le_wf, 
zero-le-nat, 
int_formula_prop_not_lemma, 
int_term_value_var_lemma, 
int_formula_prop_eq_lemma, 
int_formula_prop_and_lemma, 
intformnot_wf, 
itermVar_wf, 
intformeq_wf, 
intformand_wf, 
full-omega-unsat, 
nat_properties, 
nat_wf, 
decidable__equal_nat, 
weak-Markov-principle2
Rules used in proof : 
inrFormation, 
baseClosed, 
functionEquality, 
because_Cache, 
independent_pairFormation, 
sqequalRule, 
voidEquality, 
voidElimination, 
isect_memberEquality, 
intEquality, 
int_eqEquality, 
lambdaEquality, 
approximateComputation, 
independent_isectElimination, 
natural_numberEquality, 
equalityTransitivity, 
isectElimination, 
dependent_pairFormation, 
applyEquality, 
functionExtensionality, 
dependent_set_memberEquality, 
rename, 
setElimination, 
equalitySymmetry, 
inlFormation, 
unionElimination, 
independent_functionElimination, 
hypothesisEquality, 
thin, 
dependent_functionElimination, 
sqequalHypSubstitution, 
hypothesis, 
lambdaFormation, 
sqequalReflexivity, 
computationStep, 
sqequalTransitivity, 
sqequalSubstitution, 
extract_by_obid, 
introduction, 
cut
Latex:
\mforall{}a:\mBbbN{}*.  ((\mforall{}c:\mBbbN{}*.  ((\mneg{}(a  =  c))  \mvee{}  (\mneg{}(0  =  c))))  {}\mRightarrow{}  (\mexists{}n:\mBbbN{}.  0  <  a  n))
Date html generated:
2017_09_29-PM-06_06_48
Last ObjectModification:
2017_09_05-PM-02_39_55
Theory : continuity
Home
Index