Nuprl Lemma : weak-Markov-principle2

a:ℕ*. ((∀c:ℕ*. ((¬¬(∃n:ℕ((a n) (c n) ∈ ℤ)))) ∨ (¬¬(∃n:ℕ(0 (c n) ∈ ℤ))))))  (∃n:ℕ0 < n))


Proof




Definitions occuring in Statement :  nat-star: * nat: less_than: a < b all: x:A. B[x] exists: x:A. B[x] not: ¬A implies:  Q or: P ∨ Q apply: a natural_number: $n int: equal: t ∈ T
Definitions unfolded in proof :  all: x:A. B[x] implies:  Q member: t ∈ T prop: uall: [x:A]. B[x] so_lambda: λ2x.t[x] nat-star: * subtype_rel: A ⊆B nat: so_apply: x[s] or: P ∨ Q cand: c∧ B not: ¬A false: False less_than': less_than'(a;b) and: P ∧ Q le: A ≤ B exists: x:A. B[x] true: True guard: {T} sq_type: SQType(T) uimplies: supposing a pi1: fst(t) decidable: Dec(P) squash: T iff: ⇐⇒ Q rev_implies:  Q nat-star-0: 0 top: Top satisfiable_int_formula: satisfiable_int_formula(fmla) ge: i ≥  lelt: i ≤ j < k int_seg: {i..j-} so_apply: x[s1;s2] so_lambda: λ2y.t[x; y]
Lemmas referenced :  all_wf nat-star_wf or_wf not_wf exists_wf nat_wf equal_wf equal-wf-base-T nat-star-retract_wf equal-wf-T-base equal-wf-base le_wf false_wf int_subtype_base subtype_base_sq strong-continuity2-implies-weak decidable__equal_int nat-star-0_wf squash_wf true_wf nat-star-retract-id subtype_rel_self iff_weakening_equal int_seg_subtype_nat int_seg_wf subtype_rel_dep_function quotient-implies-squash int_formula_prop_wf int_term_value_constant_lemma int_term_value_var_lemma int_formula_prop_eq_lemma int_formula_prop_not_lemma int_formula_prop_and_lemma itermConstant_wf itermVar_wf intformeq_wf intformnot_wf intformand_wf satisfiable-full-omega-tt nat_properties decidable__not decidable__exists_int_seg decidable__equal_nat int_formula_prop_le_lemma intformle_wf decidable__le int_seg_properties unit_wf2 mu-dec-property it_wf less_than_wf int_formula_prop_less_lemma intformless_wf decidable__lt mu-dec_wf
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity lambdaFormation cut introduction extract_by_obid sqequalHypSubstitution isectElimination thin hypothesis sqequalRule lambdaEquality intEquality applyEquality setElimination rename hypothesisEquality because_Cache baseClosed functionEquality unionElimination functionExtensionality dependent_functionElimination productEquality voidElimination independent_functionElimination independent_pairFormation natural_numberEquality dependent_set_memberEquality dependent_pairFormation promote_hyp levelHypothesis equalitySymmetry equalityTransitivity independent_isectElimination cumulativity instantiate addLevel productElimination imageElimination universeEquality imageMemberEquality computeAll voidEquality isect_memberEquality int_eqEquality applyLambdaEquality

Latex:
\mforall{}a:\mBbbN{}*.  ((\mforall{}c:\mBbbN{}*.  ((\mneg{}\mneg{}(\mexists{}n:\mBbbN{}.  (\mneg{}((a  n)  =  (c  n)))))  \mvee{}  (\mneg{}\mneg{}(\mexists{}n:\mBbbN{}.  (\mneg{}(0  =  (c  n)))))))  {}\mRightarrow{}  (\mexists{}n:\mBbbN{}.  0  <  a  n))



Date html generated: 2018_05_21-PM-01_19_02
Last ObjectModification: 2018_05_15-PM-04_32_46

Theory : continuity


Home Index