Nuprl Lemma : weak-Markov-principle2
∀a:ℕ*. ((∀c:ℕ*. ((¬¬(∃n:ℕ. (¬((a n) = (c n) ∈ ℤ)))) ∨ (¬¬(∃n:ℕ. (¬(0 = (c n) ∈ ℤ)))))) 
⇒ (∃n:ℕ. 0 < a n))
Proof
Definitions occuring in Statement : 
nat-star: ℕ*
, 
nat: ℕ
, 
less_than: a < b
, 
all: ∀x:A. B[x]
, 
exists: ∃x:A. B[x]
, 
not: ¬A
, 
implies: P 
⇒ Q
, 
or: P ∨ Q
, 
apply: f a
, 
natural_number: $n
, 
int: ℤ
, 
equal: s = t ∈ T
Definitions unfolded in proof : 
all: ∀x:A. B[x]
, 
implies: P 
⇒ Q
, 
member: t ∈ T
, 
prop: ℙ
, 
uall: ∀[x:A]. B[x]
, 
so_lambda: λ2x.t[x]
, 
nat-star: ℕ*
, 
subtype_rel: A ⊆r B
, 
nat: ℕ
, 
so_apply: x[s]
, 
or: P ∨ Q
, 
cand: A c∧ B
, 
not: ¬A
, 
false: False
, 
less_than': less_than'(a;b)
, 
and: P ∧ Q
, 
le: A ≤ B
, 
exists: ∃x:A. B[x]
, 
true: True
, 
guard: {T}
, 
sq_type: SQType(T)
, 
uimplies: b supposing a
, 
pi1: fst(t)
, 
decidable: Dec(P)
, 
squash: ↓T
, 
iff: P 
⇐⇒ Q
, 
rev_implies: P 
⇐ Q
, 
nat-star-0: 0
, 
top: Top
, 
satisfiable_int_formula: satisfiable_int_formula(fmla)
, 
ge: i ≥ j 
, 
lelt: i ≤ j < k
, 
int_seg: {i..j-}
, 
so_apply: x[s1;s2]
, 
so_lambda: λ2x y.t[x; y]
Lemmas referenced : 
all_wf, 
nat-star_wf, 
or_wf, 
not_wf, 
exists_wf, 
nat_wf, 
equal_wf, 
equal-wf-base-T, 
nat-star-retract_wf, 
equal-wf-T-base, 
equal-wf-base, 
le_wf, 
false_wf, 
int_subtype_base, 
subtype_base_sq, 
strong-continuity2-implies-weak, 
decidable__equal_int, 
nat-star-0_wf, 
squash_wf, 
true_wf, 
nat-star-retract-id, 
subtype_rel_self, 
iff_weakening_equal, 
int_seg_subtype_nat, 
int_seg_wf, 
subtype_rel_dep_function, 
quotient-implies-squash, 
int_formula_prop_wf, 
int_term_value_constant_lemma, 
int_term_value_var_lemma, 
int_formula_prop_eq_lemma, 
int_formula_prop_not_lemma, 
int_formula_prop_and_lemma, 
itermConstant_wf, 
itermVar_wf, 
intformeq_wf, 
intformnot_wf, 
intformand_wf, 
satisfiable-full-omega-tt, 
nat_properties, 
decidable__not, 
decidable__exists_int_seg, 
decidable__equal_nat, 
int_formula_prop_le_lemma, 
intformle_wf, 
decidable__le, 
int_seg_properties, 
unit_wf2, 
mu-dec-property, 
it_wf, 
less_than_wf, 
int_formula_prop_less_lemma, 
intformless_wf, 
decidable__lt, 
mu-dec_wf
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
lambdaFormation, 
cut, 
introduction, 
extract_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
thin, 
hypothesis, 
sqequalRule, 
lambdaEquality, 
intEquality, 
applyEquality, 
setElimination, 
rename, 
hypothesisEquality, 
because_Cache, 
baseClosed, 
functionEquality, 
unionElimination, 
functionExtensionality, 
dependent_functionElimination, 
productEquality, 
voidElimination, 
independent_functionElimination, 
independent_pairFormation, 
natural_numberEquality, 
dependent_set_memberEquality, 
dependent_pairFormation, 
promote_hyp, 
levelHypothesis, 
equalitySymmetry, 
equalityTransitivity, 
independent_isectElimination, 
cumulativity, 
instantiate, 
addLevel, 
productElimination, 
imageElimination, 
universeEquality, 
imageMemberEquality, 
computeAll, 
voidEquality, 
isect_memberEquality, 
int_eqEquality, 
applyLambdaEquality
Latex:
\mforall{}a:\mBbbN{}*.  ((\mforall{}c:\mBbbN{}*.  ((\mneg{}\mneg{}(\mexists{}n:\mBbbN{}.  (\mneg{}((a  n)  =  (c  n)))))  \mvee{}  (\mneg{}\mneg{}(\mexists{}n:\mBbbN{}.  (\mneg{}(0  =  (c  n)))))))  {}\mRightarrow{}  (\mexists{}n:\mBbbN{}.  0  <  a  n))
Date html generated:
2018_05_21-PM-01_19_02
Last ObjectModification:
2018_05_15-PM-04_32_46
Theory : continuity
Home
Index