Nuprl Lemma : nat-star-retract-id

[s:ℕ*]. (nat-star-retract(s) s ∈ ℕ*)


Proof




Definitions occuring in Statement :  nat-star-retract: nat-star-retract(s) nat-star: * uall: [x:A]. B[x] equal: t ∈ T
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T nat-star: * squash: T so_lambda: λ2x.t[x] implies:  Q prop: subtype_rel: A ⊆B nat: so_apply: x[s] all: x:A. B[x] nat-star-retract: nat-star-retract(s) uimplies: supposing a le: A ≤ B and: P ∧ Q less_than': less_than'(a;b) false: False not: ¬A bool: 𝔹 unit: Unit it: btrue: tt uiff: uiff(P;Q) iff: ⇐⇒ Q guard: {T} ifthenelse: if then else fi  bfalse: ff exists: x:A. B[x] or: P ∨ Q sq_type: SQType(T) bnot: ¬bb assert: b rev_implies:  Q decidable: Dec(P) int_seg: {i..j-} ge: i ≥  lelt: i ≤ j < k satisfiable_int_formula: satisfiable_int_formula(fmla) top: Top
Lemmas referenced :  nat-star-retract_wf nat-star_wf all_wf nat_wf less_than_wf equal_wf bl-exists_wf int_seg_wf upto_wf l_member_wf lt_int_wf int_seg_subtype_nat false_wf bool_wf eqtt_to_assert assert-bl-exists l_exists_functionality assert_wf iff_weakening_uiff subtype_rel_set assert_of_lt_int set_wf eqff_to_assert bool_cases_sqequal subtype_base_sq bool_subtype_base assert-bnot l_exists_wf l_exists_iff decidable__lt int_seg_properties nat_properties decidable__equal_int satisfiable-full-omega-tt intformand_wf intformeq_wf itermVar_wf intformless_wf int_formula_prop_and_lemma int_formula_prop_eq_lemma int_term_value_var_lemma int_formula_prop_less_lemma int_formula_prop_wf le_wf intformnot_wf itermConstant_wf intformle_wf int_formula_prop_not_lemma int_term_value_constant_lemma int_formula_prop_le_lemma not_wf
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation cut introduction extract_by_obid sqequalHypSubstitution isectElimination thin setElimination rename hypothesisEquality hypothesis applyLambdaEquality sqequalRule imageMemberEquality baseClosed imageElimination dependent_set_memberEquality lambdaEquality functionEquality natural_numberEquality applyEquality functionExtensionality because_Cache intEquality lambdaFormation independent_isectElimination independent_pairFormation setEquality unionElimination equalityElimination equalityTransitivity equalitySymmetry productElimination dependent_functionElimination independent_functionElimination promote_hyp dependent_pairFormation instantiate cumulativity voidElimination int_eqEquality isect_memberEquality voidEquality computeAll

Latex:
\mforall{}[s:\mBbbN{}*].  (nat-star-retract(s)  =  s)



Date html generated: 2017_04_17-AM-09_55_14
Last ObjectModification: 2017_02_27-PM-05_49_38

Theory : continuity


Home Index