Nuprl Lemma : nat-star-retract_wf

[s:ℕ ⟶ ℕ]. (nat-star-retract(s) ∈ ℕ*)


Proof




Definitions occuring in Statement :  nat-star-retract: nat-star-retract(s) nat-star: * nat: uall: [x:A]. B[x] member: t ∈ T function: x:A ⟶ B[x]
Definitions unfolded in proof :  ge: i ≥  satisfiable_int_formula: satisfiable_int_formula(fmla) top: Top int_seg: {i..j-} lelt: i ≤ j < k cand: c∧ B decidable: Dec(P) less_than: a < b squash: T uall: [x:A]. B[x] member: t ∈ T nat-star-retract: nat-star-retract(s) nat: so_lambda: λ2x.t[x] all: x:A. B[x] prop: subtype_rel: A ⊆B uimplies: supposing a le: A ≤ B and: P ∧ Q less_than': less_than'(a;b) false: False not: ¬A implies:  Q so_apply: x[s] bool: 𝔹 unit: Unit it: btrue: tt uiff: uiff(P;Q) iff: ⇐⇒ Q guard: {T} ifthenelse: if then else fi  bfalse: ff exists: x:A. B[x] or: P ∨ Q sq_type: SQType(T) bnot: ¬bb assert: b rev_implies:  Q nat-star: *
Lemmas referenced :  nat_properties decidable__equal_int full-omega-unsat intformand_wf intformnot_wf intformeq_wf itermVar_wf intformless_wf int_formula_prop_and_lemma istype-void int_formula_prop_not_lemma int_formula_prop_eq_lemma int_term_value_var_lemma int_formula_prop_less_lemma int_formula_prop_wf l_exists_iff member_upto2 decidable__lt bl-exists_wf int_seg_wf upto_wf l_member_wf lt_int_wf nat_wf int_seg_subtype_nat istype-false eqtt_to_assert assert-bl-exists l_exists_functionality assert_wf less_than_wf iff_weakening_uiff subtype_rel_set assert_of_lt_int le_wf eqff_to_assert bool_cases_sqequal subtype_base_sq bool_wf bool_subtype_base assert-bnot l_exists_wf istype-int set_subtype_base int_subtype_base
Rules used in proof :  approximateComputation int_eqEquality Error :isect_memberEquality_alt,  Error :productIsType,  imageElimination sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity Error :isect_memberFormation_alt,  introduction cut sqequalRule Error :lambdaEquality_alt,  extract_by_obid sqequalHypSubstitution isectElimination thin natural_numberEquality setElimination rename because_Cache hypothesis Error :lambdaFormation_alt,  hypothesisEquality Error :universeIsType,  applyEquality functionExtensionality independent_isectElimination independent_pairFormation Error :setIsType,  Error :inhabitedIsType,  unionElimination equalityElimination productElimination dependent_functionElimination independent_functionElimination Error :dependent_set_memberEquality_alt,  equalityTransitivity equalitySymmetry Error :dependent_pairFormation_alt,  Error :equalityIsType1,  promote_hyp instantiate cumulativity voidElimination Error :functionIsType,  Error :equalityIsType4,  intEquality axiomEquality

Latex:
\mforall{}[s:\mBbbN{}  {}\mrightarrow{}  \mBbbN{}].  (nat-star-retract(s)  \mmember{}  \mBbbN{}*)



Date html generated: 2019_06_20-PM-03_17_41
Last ObjectModification: 2019_06_20-PM-03_12_51

Theory : continuity


Home Index