Nuprl Lemma : deq-member-union

[T:Type]. ∀[eq:EqDecider(T)]. ∀[as,bs:T List]. ∀[x:T].  (x ∈b as ⋃ bs x ∈b as ∨bx ∈b bs)


Proof




Definitions occuring in Statement :  l-union: as ⋃ bs deq-member: x ∈b L list: List deq: EqDecider(T) bor: p ∨bq uall: [x:A]. B[x] universe: Type sqequal: t
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T uimplies: supposing a sq_type: SQType(T) all: x:A. B[x] implies:  Q guard: {T} prop: or: P ∨ Q iff: ⇐⇒ Q rev_implies:  Q and: P ∧ Q
Lemmas referenced :  subtype_base_sq bool_subtype_base iff_imp_equal_bool deq-member_wf l-union_wf bor_wf list_wf deq_wf assert_wf or_wf l_member_wf iff_wf assert-deq-member iff_transitivity iff_weakening_uiff assert_of_bor member-union
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation introduction cut thin instantiate lemma_by_obid sqequalHypSubstitution isectElimination because_Cache independent_isectElimination hypothesis hypothesisEquality dependent_functionElimination equalityTransitivity equalitySymmetry independent_functionElimination sqequalAxiom sqequalRule isect_memberEquality universeEquality addLevel productElimination independent_pairFormation impliesFunctionality lambdaFormation orFunctionality

Latex:
\mforall{}[T:Type].  \mforall{}[eq:EqDecider(T)].  \mforall{}[as,bs:T  List].  \mforall{}[x:T].    (x  \mmember{}\msubb{}  as  \mcup{}  bs  \msim{}  x  \mmember{}\msubb{}  as  \mvee{}\msubb{}x  \mmember{}\msubb{}  bs)



Date html generated: 2016_05_14-PM-03_25_01
Last ObjectModification: 2015_12_26-PM-06_22_21

Theory : decidable!equality


Home Index