Nuprl Lemma : fset-constrained-image-union

[T,A:Type]. ∀[eqt:EqDecider(T)]. ∀[eqa:EqDecider(A)]. ∀[f:T ⟶ A]. ∀[P:A ⟶ 𝔹]. ∀[x,y:fset(T)].
  (f"(x ⋃ y) s.t. f"(x) s.t. P ⋃ f"(y) s.t. P ∈ fset(A))


Proof




Definitions occuring in Statement :  fset-constrained-image: f"(s) s.t. P fset-union: x ⋃ y fset: fset(T) deq: EqDecider(T) bool: 𝔹 uall: [x:A]. B[x] function: x:A ⟶ B[x] universe: Type equal: t ∈ T
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T uiff: uiff(P;Q) and: P ∧ Q uimplies: supposing a implies:  Q prop: rev_implies:  Q all: x:A. B[x] iff: ⇐⇒ Q or: P ∨ Q decidable: Dec(P) guard: {T} not: ¬A so_lambda: λ2x.t[x] so_apply: x[s] rev_uimplies: rev_uimplies(P;Q) squash: T exists: x:A. B[x] cand: c∧ B false: False
Lemmas referenced :  fset-extensionality fset-constrained-image_wf fset-union_wf fset-member_witness fset-member_wf or_wf member-fset-union uiff_wf fset_wf bool_wf deq_wf member-fset-constrained-image-iff decidable__fset-member squash_wf exists_wf equal_wf assert_wf
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation introduction cut extract_by_obid sqequalHypSubstitution isectElimination thin hypothesisEquality cumulativity functionExtensionality applyEquality hypothesis productElimination independent_isectElimination independent_pairFormation because_Cache independent_functionElimination rename addLevel dependent_functionElimination sqequalRule independent_pairEquality isect_memberEquality equalityTransitivity equalitySymmetry axiomEquality functionEquality universeEquality unionElimination inlFormation inrFormation lambdaFormation lambdaEquality productEquality promote_hyp imageElimination dependent_pairFormation imageMemberEquality baseClosed voidElimination

Latex:
\mforall{}[T,A:Type].  \mforall{}[eqt:EqDecider(T)].  \mforall{}[eqa:EqDecider(A)].  \mforall{}[f:T  {}\mrightarrow{}  A].  \mforall{}[P:A  {}\mrightarrow{}  \mBbbB{}].  \mforall{}[x,y:fset(T)].
    (f"(x  \mcup{}  y)  s.t.  P  =  f"(x)  s.t.  P  \mcup{}  f"(y)  s.t.  P)



Date html generated: 2017_04_17-AM-09_21_20
Last ObjectModification: 2017_02_27-PM-05_24_07

Theory : finite!sets


Home Index