Nuprl Lemma : fset-only_wf

[T:Type]. ∀[eq:EqDecider(T)]. ∀[P:T ⟶ 𝔹]. ∀[s:fset(T)].
  (only x ∈ s.t. P[x] ∈ {x:T| x ∈ s ∧ (↑P[x])} supposing 
     ((∀x,y:T.  (x ∈  y ∈  (↑P[x])  (↑P[y])  (x y ∈ T))) and 
     (∀x:T. (x ∈  (¬↑P[x])))))


Proof




Definitions occuring in Statement :  fset-only: only x ∈ s.t. P[x] fset-member: a ∈ s fset: fset(T) deq: EqDecider(T) assert: b bool: 𝔹 uimplies: supposing a uall: [x:A]. B[x] so_apply: x[s] all: x:A. B[x] not: ¬A implies:  Q and: P ∧ Q member: t ∈ T set: {x:A| B[x]}  function: x:A ⟶ B[x] universe: Type equal: t ∈ T
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T uimplies: supposing a all: x:A. B[x] implies:  Q prop: so_apply: x[s] so_lambda: λ2x.t[x] fset-only: only x ∈ s.t. P[x] and: P ∧ Q exists: x:A. B[x] false: False not: ¬A subtype_rel: A ⊆B decidable: Dec(P) or: P ∨ Q iff: ⇐⇒ Q rev_implies:  Q cand: c∧ B guard: {T} uiff: uiff(P;Q)
Lemmas referenced :  istype-universe fset-member_wf assert_wf not_wf all_wf fset_wf bool_wf deq_wf decidable__equal_int fset-size_wf fset-filter_wf fset-size-one iff_weakening_uiff member-fset-filter fset-item_wf fset-item-member and_wf exists_wf
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity Error :isect_memberFormation_alt,  introduction cut sqequalHypSubstitution hypothesis sqequalRule axiomEquality equalityTransitivity equalitySymmetry Error :functionIsType,  extract_by_obid isectElimination thin hypothesisEquality Error :inhabitedIsType,  Error :universeIsType,  applyEquality Error :equalityIsType1,  Error :isect_memberEquality_alt,  Error :lambdaEquality_alt,  functionEquality because_Cache universeEquality lambdaEquality voidElimination lemma_by_obid independent_pairFormation dependent_pairFormation independent_functionElimination lambdaFormation dependent_functionElimination natural_numberEquality unionElimination Error :lambdaFormation_alt,  Error :productIsType,  productElimination Error :dependent_pairFormation_alt,  Error :isectIsType,  productEquality promote_hyp independent_isectElimination dependent_set_memberEquality

Latex:
\mforall{}[T:Type].  \mforall{}[eq:EqDecider(T)].  \mforall{}[P:T  {}\mrightarrow{}  \mBbbB{}].  \mforall{}[s:fset(T)].
    (only  x  \mmember{}  s  s.t.  P[x]  \mmember{}  \{x:T|  x  \mmember{}  s  \mwedge{}  (\muparrow{}P[x])\}  )  supposing 
          ((\mforall{}x,y:T.    (x  \mmember{}  s  {}\mRightarrow{}  y  \mmember{}  s  {}\mRightarrow{}  (\muparrow{}P[x])  {}\mRightarrow{}  (\muparrow{}P[y])  {}\mRightarrow{}  (x  =  y)))  and 
          (\mneg{}(\mforall{}x:T.  (x  \mmember{}  s  {}\mRightarrow{}  (\mneg{}\muparrow{}P[x])))))



Date html generated: 2019_06_20-PM-02_00_16
Last ObjectModification: 2018_10_06-AM-11_23_46

Theory : finite!sets


Home Index