Nuprl Lemma : fset-item_wf
∀[T:Type]. ∀[eq:EqDecider(T)]. ∀[s:fset(T)].  item(s) ∈ T supposing ||s|| = 1 ∈ ℤ
Proof
Definitions occuring in Statement : 
fset-item: item(s), 
fset-size: ||s||, 
fset: fset(T), 
deq: EqDecider(T), 
uimplies: b supposing a, 
uall: ∀[x:A]. B[x], 
member: t ∈ T, 
natural_number: $n, 
int: ℤ, 
universe: Type, 
equal: s = t ∈ T
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x], 
member: t ∈ T, 
uimplies: b supposing a, 
fset: fset(T), 
all: ∀x:A. B[x], 
prop: ℙ, 
quotient: x,y:A//B[x; y], 
and: P ∧ Q, 
fset-size: ||s||, 
fset-item: item(s), 
decidable: Dec(P), 
or: P ∨ Q, 
le: A ≤ B, 
not: ¬A, 
implies: P ⇒ Q, 
satisfiable_int_formula: satisfiable_int_formula(fmla), 
exists: ∃x:A. B[x], 
false: False, 
top: Top, 
ge: i ≥ j , 
squash: ↓T, 
true: True, 
subtype_rel: A ⊆r B, 
nat: ℕ, 
so_lambda: λ2x.t[x], 
so_apply: x[s], 
cons: [a / b], 
set-equal: set-equal(T;x;y), 
iff: P ⇐⇒ Q, 
rev_implies: P ⇐ Q, 
uiff: uiff(P;Q), 
listp: A List+
Lemmas referenced : 
list_wf, 
set-equal_wf, 
set-equal-reflex, 
length-remove-repeats-le, 
decidable__le, 
length_wf, 
full-omega-unsat, 
intformand_wf, 
intformnot_wf, 
intformle_wf, 
itermConstant_wf, 
itermVar_wf, 
intformeq_wf, 
istype-int, 
int_formula_prop_and_lemma, 
istype-void, 
int_formula_prop_not_lemma, 
int_formula_prop_le_lemma, 
int_term_value_constant_lemma, 
int_term_value_var_lemma, 
int_formula_prop_eq_lemma, 
int_formula_prop_wf, 
hd_wf, 
member_wf, 
squash_wf, 
true_wf, 
fset-size_wf, 
set_subtype_base, 
le_wf, 
int_subtype_base, 
fset_wf, 
deq_wf, 
istype-universe, 
list-cases, 
length_of_nil_lemma, 
istype-le, 
nil_wf, 
product_subtype_list, 
length_of_cons_lemma, 
cons_wf, 
cons_member, 
l_member_wf, 
null_nil_lemma, 
btrue_wf, 
member-implies-null-eq-bfalse, 
btrue_neq_bfalse, 
non_neg_length, 
itermAdd_wf, 
int_term_value_add_lemma, 
length-one-iff, 
remove-repeats_wf, 
member-remove-repeats, 
hd_member, 
listp-not-nil, 
decidable__lt, 
intformless_wf, 
int_formula_prop_less_lemma, 
istype-less_than, 
iff_weakening_uiff, 
assert_wf, 
null_wf, 
equal-wf-T-base, 
assert_of_null, 
istype-assert
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
Error :isect_memberFormation_alt, 
introduction, 
cut, 
sqequalHypSubstitution, 
Error :universeIsType, 
extract_by_obid, 
isectElimination, 
thin, 
hypothesisEquality, 
hypothesis, 
promote_hyp, 
Error :lambdaFormation_alt, 
Error :inhabitedIsType, 
pointwiseFunctionality, 
sqequalRule, 
pertypeElimination, 
productElimination, 
equalityTransitivity, 
equalitySymmetry, 
dependent_functionElimination, 
unionElimination, 
natural_numberEquality, 
independent_isectElimination, 
approximateComputation, 
independent_functionElimination, 
Error :dependent_pairFormation_alt, 
Error :lambdaEquality_alt, 
int_eqEquality, 
Error :isect_memberEquality_alt, 
voidElimination, 
independent_pairFormation, 
Error :productIsType, 
Error :equalityIsType4, 
applyEquality, 
imageElimination, 
because_Cache, 
imageMemberEquality, 
baseClosed, 
axiomEquality, 
Error :equalityIstype, 
intEquality, 
closedConclusion, 
sqequalBase, 
Error :isectIsTypeImplies, 
instantiate, 
universeEquality, 
Error :equalityIsType1, 
hypothesis_subsumption, 
rename, 
Error :inlFormation_alt, 
addEquality, 
Error :dependent_set_memberEquality_alt
Latex:
\mforall{}[T:Type].  \mforall{}[eq:EqDecider(T)].  \mforall{}[s:fset(T)].    item(s)  \mmember{}  T  supposing  ||s||  =  1
Date html generated:
2019_06_20-PM-02_00_05
Last ObjectModification:
2018_11_23-PM-02_42_42
Theory : finite!sets
Home
Index