Nuprl Lemma : fset-item_wf

[T:Type]. ∀[eq:EqDecider(T)]. ∀[s:fset(T)].  item(s) ∈ supposing ||s|| 1 ∈ ℤ


Proof




Definitions occuring in Statement :  fset-item: item(s) fset-size: ||s|| fset: fset(T) deq: EqDecider(T) uimplies: supposing a uall: [x:A]. B[x] member: t ∈ T natural_number: $n int: universe: Type equal: t ∈ T
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T uimplies: supposing a fset: fset(T) all: x:A. B[x] prop: quotient: x,y:A//B[x; y] and: P ∧ Q fset-size: ||s|| fset-item: item(s) decidable: Dec(P) or: P ∨ Q le: A ≤ B not: ¬A implies:  Q satisfiable_int_formula: satisfiable_int_formula(fmla) exists: x:A. B[x] false: False top: Top ge: i ≥  squash: T true: True subtype_rel: A ⊆B nat: so_lambda: λ2x.t[x] so_apply: x[s] cons: [a b] set-equal: set-equal(T;x;y) iff: ⇐⇒ Q rev_implies:  Q uiff: uiff(P;Q) listp: List+
Lemmas referenced :  list_wf set-equal_wf set-equal-reflex length-remove-repeats-le decidable__le length_wf full-omega-unsat intformand_wf intformnot_wf intformle_wf itermConstant_wf itermVar_wf intformeq_wf istype-int int_formula_prop_and_lemma istype-void int_formula_prop_not_lemma int_formula_prop_le_lemma int_term_value_constant_lemma int_term_value_var_lemma int_formula_prop_eq_lemma int_formula_prop_wf hd_wf member_wf squash_wf true_wf fset-size_wf set_subtype_base le_wf int_subtype_base fset_wf deq_wf istype-universe list-cases length_of_nil_lemma istype-le nil_wf product_subtype_list length_of_cons_lemma cons_wf cons_member l_member_wf null_nil_lemma btrue_wf member-implies-null-eq-bfalse btrue_neq_bfalse non_neg_length itermAdd_wf int_term_value_add_lemma length-one-iff remove-repeats_wf member-remove-repeats hd_member listp-not-nil decidable__lt intformless_wf int_formula_prop_less_lemma istype-less_than iff_weakening_uiff assert_wf null_wf equal-wf-T-base assert_of_null istype-assert
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity Error :isect_memberFormation_alt,  introduction cut sqequalHypSubstitution Error :universeIsType,  extract_by_obid isectElimination thin hypothesisEquality hypothesis promote_hyp Error :lambdaFormation_alt,  Error :inhabitedIsType,  pointwiseFunctionality sqequalRule pertypeElimination productElimination equalityTransitivity equalitySymmetry dependent_functionElimination unionElimination natural_numberEquality independent_isectElimination approximateComputation independent_functionElimination Error :dependent_pairFormation_alt,  Error :lambdaEquality_alt,  int_eqEquality Error :isect_memberEquality_alt,  voidElimination independent_pairFormation Error :productIsType,  Error :equalityIsType4,  applyEquality imageElimination because_Cache imageMemberEquality baseClosed axiomEquality Error :equalityIstype,  intEquality closedConclusion sqequalBase Error :isectIsTypeImplies,  instantiate universeEquality Error :equalityIsType1,  hypothesis_subsumption rename Error :inlFormation_alt,  addEquality Error :dependent_set_memberEquality_alt

Latex:
\mforall{}[T:Type].  \mforall{}[eq:EqDecider(T)].  \mforall{}[s:fset(T)].    item(s)  \mmember{}  T  supposing  ||s||  =  1



Date html generated: 2019_06_20-PM-02_00_05
Last ObjectModification: 2018_11_23-PM-02_42_42

Theory : finite!sets


Home Index