Nuprl Lemma : fset-item-member

[T:Type]. ∀[eq:EqDecider(T)]. ∀[s:fset(T)].  item(s) ∈ supposing ||s|| 1 ∈ ℤ


Proof




Definitions occuring in Statement :  fset-item: item(s) fset-size: ||s|| fset-member: a ∈ s fset: fset(T) deq: EqDecider(T) uimplies: supposing a uall: [x:A]. B[x] natural_number: $n int: universe: Type equal: t ∈ T
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T uimplies: supposing a fset-item: item(s) fset-member: a ∈ s sq_type: SQType(T) all: x:A. B[x] implies:  Q guard: {T} prop: subtype_rel: A ⊆B nat: fset-size: ||s|| fset: fset(T) quotient: x,y:A//B[x; y] and: P ∧ Q ge: i ≥  iff: ⇐⇒ Q true: True rev_implies:  Q or: P ∨ Q assert: b ifthenelse: if then else fi  btrue: tt le: A ≤ B less_than': less_than'(a;b) not: ¬A false: False cons: [a b] top: Top bfalse: ff squash: T decidable: Dec(P) satisfiable_int_formula: satisfiable_int_formula(fmla) exists: x:A. B[x]
Lemmas referenced :  fset-item_wf subtype_base_sq bool_wf bool_subtype_base assert_of_tt fset-member_witness equal-wf-T-base fset-size_wf nat_wf fset_wf deq_wf list_wf set-equal_wf set-equal-reflex length-remove-repeats-le iff_imp_equal_bool deq-member_wf hd_wf btrue_wf l_member_wf hd_member list-cases null_nil_lemma length_of_nil_lemma product_subtype_list null_cons_lemma length_of_cons_lemma false_wf true_wf assert-deq-member assert_wf iff_wf le_wf length_wf equal-wf-base equal_wf squash_wf iff_weakening_equal decidable__le satisfiable-full-omega-tt intformand_wf intformnot_wf intformle_wf itermConstant_wf itermVar_wf intformeq_wf int_formula_prop_and_lemma int_formula_prop_not_lemma int_formula_prop_le_lemma int_term_value_constant_lemma int_term_value_var_lemma int_formula_prop_eq_lemma int_formula_prop_wf remove-repeats-set-equal
Rules used in proof :  cut introduction extract_by_obid sqequalHypSubstitution sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isectElimination thin hypothesisEquality independent_isectElimination hypothesis instantiate cumulativity dependent_functionElimination equalityTransitivity equalitySymmetry independent_functionElimination because_Cache isect_memberFormation intEquality applyEquality lambdaEquality setElimination rename sqequalRule baseClosed isect_memberEquality universeEquality promote_hyp lambdaFormation pointwiseFunctionality pertypeElimination productElimination independent_pairFormation natural_numberEquality unionElimination voidElimination hypothesis_subsumption voidEquality addLevel impliesFunctionality productEquality imageElimination imageMemberEquality dependent_pairFormation int_eqEquality computeAll

Latex:
\mforall{}[T:Type].  \mforall{}[eq:EqDecider(T)].  \mforall{}[s:fset(T)].    item(s)  \mmember{}  s  supposing  ||s||  =  1



Date html generated: 2017_04_17-AM-09_23_12
Last ObjectModification: 2017_02_27-PM-05_24_53

Theory : finite!sets


Home Index