Nuprl Lemma : fset-item-member
∀[T:Type]. ∀[eq:EqDecider(T)]. ∀[s:fset(T)].  item(s) ∈ s supposing ||s|| = 1 ∈ ℤ
Proof
Definitions occuring in Statement : 
fset-item: item(s)
, 
fset-size: ||s||
, 
fset-member: a ∈ s
, 
fset: fset(T)
, 
deq: EqDecider(T)
, 
uimplies: b supposing a
, 
uall: ∀[x:A]. B[x]
, 
natural_number: $n
, 
int: ℤ
, 
universe: Type
, 
equal: s = t ∈ T
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
uimplies: b supposing a
, 
fset-item: item(s)
, 
fset-member: a ∈ s
, 
sq_type: SQType(T)
, 
all: ∀x:A. B[x]
, 
implies: P 
⇒ Q
, 
guard: {T}
, 
prop: ℙ
, 
subtype_rel: A ⊆r B
, 
nat: ℕ
, 
fset-size: ||s||
, 
fset: fset(T)
, 
quotient: x,y:A//B[x; y]
, 
and: P ∧ Q
, 
ge: i ≥ j 
, 
iff: P 
⇐⇒ Q
, 
true: True
, 
rev_implies: P 
⇐ Q
, 
or: P ∨ Q
, 
assert: ↑b
, 
ifthenelse: if b then t else f fi 
, 
btrue: tt
, 
le: A ≤ B
, 
less_than': less_than'(a;b)
, 
not: ¬A
, 
false: False
, 
cons: [a / b]
, 
top: Top
, 
bfalse: ff
, 
squash: ↓T
, 
decidable: Dec(P)
, 
satisfiable_int_formula: satisfiable_int_formula(fmla)
, 
exists: ∃x:A. B[x]
Lemmas referenced : 
fset-item_wf, 
subtype_base_sq, 
bool_wf, 
bool_subtype_base, 
assert_of_tt, 
fset-member_witness, 
equal-wf-T-base, 
fset-size_wf, 
nat_wf, 
fset_wf, 
deq_wf, 
list_wf, 
set-equal_wf, 
set-equal-reflex, 
length-remove-repeats-le, 
iff_imp_equal_bool, 
deq-member_wf, 
hd_wf, 
btrue_wf, 
l_member_wf, 
hd_member, 
list-cases, 
null_nil_lemma, 
length_of_nil_lemma, 
product_subtype_list, 
null_cons_lemma, 
length_of_cons_lemma, 
false_wf, 
true_wf, 
assert-deq-member, 
assert_wf, 
iff_wf, 
le_wf, 
length_wf, 
equal-wf-base, 
equal_wf, 
squash_wf, 
iff_weakening_equal, 
decidable__le, 
satisfiable-full-omega-tt, 
intformand_wf, 
intformnot_wf, 
intformle_wf, 
itermConstant_wf, 
itermVar_wf, 
intformeq_wf, 
int_formula_prop_and_lemma, 
int_formula_prop_not_lemma, 
int_formula_prop_le_lemma, 
int_term_value_constant_lemma, 
int_term_value_var_lemma, 
int_formula_prop_eq_lemma, 
int_formula_prop_wf, 
remove-repeats-set-equal
Rules used in proof : 
cut, 
introduction, 
extract_by_obid, 
sqequalHypSubstitution, 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isectElimination, 
thin, 
hypothesisEquality, 
independent_isectElimination, 
hypothesis, 
instantiate, 
cumulativity, 
dependent_functionElimination, 
equalityTransitivity, 
equalitySymmetry, 
independent_functionElimination, 
because_Cache, 
isect_memberFormation, 
intEquality, 
applyEquality, 
lambdaEquality, 
setElimination, 
rename, 
sqequalRule, 
baseClosed, 
isect_memberEquality, 
universeEquality, 
promote_hyp, 
lambdaFormation, 
pointwiseFunctionality, 
pertypeElimination, 
productElimination, 
independent_pairFormation, 
natural_numberEquality, 
unionElimination, 
voidElimination, 
hypothesis_subsumption, 
voidEquality, 
addLevel, 
impliesFunctionality, 
productEquality, 
imageElimination, 
imageMemberEquality, 
dependent_pairFormation, 
int_eqEquality, 
computeAll
Latex:
\mforall{}[T:Type].  \mforall{}[eq:EqDecider(T)].  \mforall{}[s:fset(T)].    item(s)  \mmember{}  s  supposing  ||s||  =  1
Date html generated:
2017_04_17-AM-09_23_12
Last ObjectModification:
2017_02_27-PM-05_24_53
Theory : finite!sets
Home
Index