Nuprl Lemma : fset-size-one

[T:Type]. ∀eq:EqDecider(T). ∀s:fset(T).  (||s|| 1 ∈ ℤ ⇐⇒ ∃x:T. (x ∈ s ∧ (∀y:T. x ∈ supposing y ∈ s)))


Proof




Definitions occuring in Statement :  fset-size: ||s|| fset-member: a ∈ s fset: fset(T) deq: EqDecider(T) uimplies: supposing a uall: [x:A]. B[x] all: x:A. B[x] exists: x:A. B[x] iff: ⇐⇒ Q and: P ∧ Q natural_number: $n int: universe: Type equal: t ∈ T
Definitions unfolded in proof :  uall: [x:A]. B[x] all: x:A. B[x] iff: ⇐⇒ Q and: P ∧ Q implies:  Q member: t ∈ T subtype_rel: A ⊆B nat: so_lambda: λ2x.t[x] so_apply: x[s] uimplies: supposing a rev_implies:  Q exists: x:A. B[x] prop: cand: c∧ B fset: fset(T) quotient: x,y:A//B[x; y] squash: T so_lambda: λ2y.t[x; y] so_apply: x[s1;s2] true: True fset-member: a ∈ s fset-size: ||s|| guard: {T} sq_type: SQType(T) set-equal: set-equal(T;x;y)
Lemmas referenced :  istype-int fset-size_wf set_subtype_base le_wf int_subtype_base fset-member_wf fset_wf deq_wf istype-universe fset-item_wf fset-item-member list_wf set-equal_wf set-equal-reflex equal_wf squash_wf true_wf equal-wf-base quotient-member-eq set-equal-equiv subtype_rel_self assert-deq-member remove-repeats-length-one iff_weakening_equal l_member_wf subtype_base_sq
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity Error :isect_memberFormation_alt,  Error :lambdaFormation_alt,  independent_pairFormation Error :equalityIstype,  cut introduction extract_by_obid hypothesis sqequalHypSubstitution isectElimination thin hypothesisEquality applyEquality sqequalRule intEquality Error :lambdaEquality_alt,  closedConclusion natural_numberEquality because_Cache independent_isectElimination baseClosed sqequalBase equalitySymmetry Error :productIsType,  Error :universeIsType,  Error :functionIsType,  Error :isectIsType,  instantiate universeEquality Error :dependent_pairFormation_alt,  equalityTransitivity Error :inhabitedIsType,  promote_hyp pointwiseFunctionality pertypeElimination productElimination Error :equalityIsType4,  dependent_functionElimination imageElimination independent_functionElimination imageMemberEquality cumulativity

Latex:
\mforall{}[T:Type]
    \mforall{}eq:EqDecider(T).  \mforall{}s:fset(T).    (||s||  =  1  \mLeftarrow{}{}\mRightarrow{}  \mexists{}x:T.  (x  \mmember{}  s  \mwedge{}  (\mforall{}y:T.  y  =  x  supposing  y  \mmember{}  s)))



Date html generated: 2019_06_20-PM-02_00_11
Last ObjectModification: 2018_11_22-AM-10_00_33

Theory : finite!sets


Home Index