Nuprl Lemma : fset-size-one
∀[T:Type]. ∀eq:EqDecider(T). ∀s:fset(T).  (||s|| = 1 ∈ ℤ 
⇐⇒ ∃x:T. (x ∈ s ∧ (∀y:T. y = x ∈ T supposing y ∈ s)))
Proof
Definitions occuring in Statement : 
fset-size: ||s||
, 
fset-member: a ∈ s
, 
fset: fset(T)
, 
deq: EqDecider(T)
, 
uimplies: b supposing a
, 
uall: ∀[x:A]. B[x]
, 
all: ∀x:A. B[x]
, 
exists: ∃x:A. B[x]
, 
iff: P 
⇐⇒ Q
, 
and: P ∧ Q
, 
natural_number: $n
, 
int: ℤ
, 
universe: Type
, 
equal: s = t ∈ T
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x]
, 
all: ∀x:A. B[x]
, 
iff: P 
⇐⇒ Q
, 
and: P ∧ Q
, 
implies: P 
⇒ Q
, 
member: t ∈ T
, 
subtype_rel: A ⊆r B
, 
nat: ℕ
, 
so_lambda: λ2x.t[x]
, 
so_apply: x[s]
, 
uimplies: b supposing a
, 
rev_implies: P 
⇐ Q
, 
exists: ∃x:A. B[x]
, 
prop: ℙ
, 
cand: A c∧ B
, 
fset: fset(T)
, 
quotient: x,y:A//B[x; y]
, 
squash: ↓T
, 
so_lambda: λ2x y.t[x; y]
, 
so_apply: x[s1;s2]
, 
true: True
, 
fset-member: a ∈ s
, 
fset-size: ||s||
, 
guard: {T}
, 
sq_type: SQType(T)
, 
set-equal: set-equal(T;x;y)
Lemmas referenced : 
istype-int, 
fset-size_wf, 
set_subtype_base, 
le_wf, 
int_subtype_base, 
fset-member_wf, 
fset_wf, 
deq_wf, 
istype-universe, 
fset-item_wf, 
fset-item-member, 
list_wf, 
set-equal_wf, 
set-equal-reflex, 
equal_wf, 
squash_wf, 
true_wf, 
equal-wf-base, 
quotient-member-eq, 
set-equal-equiv, 
subtype_rel_self, 
assert-deq-member, 
remove-repeats-length-one, 
iff_weakening_equal, 
l_member_wf, 
subtype_base_sq
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
Error :isect_memberFormation_alt, 
Error :lambdaFormation_alt, 
independent_pairFormation, 
Error :equalityIstype, 
cut, 
introduction, 
extract_by_obid, 
hypothesis, 
sqequalHypSubstitution, 
isectElimination, 
thin, 
hypothesisEquality, 
applyEquality, 
sqequalRule, 
intEquality, 
Error :lambdaEquality_alt, 
closedConclusion, 
natural_numberEquality, 
because_Cache, 
independent_isectElimination, 
baseClosed, 
sqequalBase, 
equalitySymmetry, 
Error :productIsType, 
Error :universeIsType, 
Error :functionIsType, 
Error :isectIsType, 
instantiate, 
universeEquality, 
Error :dependent_pairFormation_alt, 
equalityTransitivity, 
Error :inhabitedIsType, 
promote_hyp, 
pointwiseFunctionality, 
pertypeElimination, 
productElimination, 
Error :equalityIsType4, 
dependent_functionElimination, 
imageElimination, 
independent_functionElimination, 
imageMemberEquality, 
cumulativity
Latex:
\mforall{}[T:Type]
    \mforall{}eq:EqDecider(T).  \mforall{}s:fset(T).    (||s||  =  1  \mLeftarrow{}{}\mRightarrow{}  \mexists{}x:T.  (x  \mmember{}  s  \mwedge{}  (\mforall{}y:T.  y  =  x  supposing  y  \mmember{}  s)))
Date html generated:
2019_06_20-PM-02_00_11
Last ObjectModification:
2018_11_22-AM-10_00_33
Theory : finite!sets
Home
Index