Nuprl Lemma : remove-repeats-length-one
∀T:Type. ∀eq:EqDecider(T). ∀L:T List.
  (||remove-repeats(eq;L)|| = 1 ∈ ℤ ⇐⇒ ∃x:T. ((x ∈ L) ∧ (∀y:T. y = x ∈ T supposing (y ∈ L))))
Proof
Definitions occuring in Statement : 
remove-repeats: remove-repeats(eq;L), 
l_member: (x ∈ l), 
length: ||as||, 
list: T List, 
deq: EqDecider(T), 
uimplies: b supposing a, 
all: ∀x:A. B[x], 
exists: ∃x:A. B[x], 
iff: P ⇐⇒ Q, 
and: P ∧ Q, 
natural_number: $n, 
int: ℤ, 
universe: Type, 
equal: s = t ∈ T
Definitions unfolded in proof : 
all: ∀x:A. B[x], 
iff: P ⇐⇒ Q, 
and: P ∧ Q, 
implies: P ⇒ Q, 
uall: ∀[x:A]. B[x], 
member: t ∈ T, 
prop: ℙ, 
rev_implies: P ⇐ Q, 
so_lambda: λ2x.t[x], 
uimplies: b supposing a, 
so_apply: x[s], 
exists: ∃x:A. B[x], 
ge: i ≥ j , 
decidable: Dec(P), 
or: P ∨ Q, 
satisfiable_int_formula: satisfiable_int_formula(fmla), 
false: False, 
not: ¬A, 
top: Top, 
cand: A c∧ B, 
set-equal: set-equal(T;x;y), 
assert: ↑b, 
ifthenelse: if b then t else f fi , 
btrue: tt, 
sq_type: SQType(T), 
guard: {T}, 
true: True, 
cons: [a / b], 
bfalse: ff, 
uiff: uiff(P;Q), 
less_than: a < b, 
squash: ↓T, 
nat: ℕ, 
le: A ≤ B, 
subtract: n - m, 
subtype_rel: A ⊆r B, 
less_than': less_than'(a;b)
Lemmas referenced : 
set-equal-remove-repeats, 
equal-wf-T-base, 
length_wf, 
remove-repeats_wf, 
exists_wf, 
l_member_wf, 
all_wf, 
isect_wf, 
equal_wf, 
list_wf, 
deq_wf, 
hd_wf, 
decidable__le, 
satisfiable-full-omega-tt, 
intformand_wf, 
intformnot_wf, 
intformle_wf, 
itermConstant_wf, 
itermVar_wf, 
intformeq_wf, 
int_formula_prop_and_lemma, 
int_formula_prop_not_lemma, 
int_formula_prop_le_lemma, 
int_term_value_constant_lemma, 
int_term_value_var_lemma, 
int_formula_prop_eq_lemma, 
int_formula_prop_wf, 
hd_member, 
list-cases, 
null_nil_lemma, 
length_of_nil_lemma, 
subtype_base_sq, 
int_subtype_base, 
false_wf, 
product_subtype_list, 
null_cons_lemma, 
length_of_cons_lemma, 
member-remove-repeats, 
length-one-iff, 
intformless_wf, 
int_formula_prop_less_lemma, 
remove-repeats-no_repeats, 
nil_member, 
length_wf_nat, 
nat_wf, 
decidable__lt, 
not-lt-2, 
condition-implies-le, 
minus-add, 
minus-one-mul, 
zero-add, 
minus-one-mul-top, 
add-commutes, 
add_functionality_wrt_le, 
add-associates, 
add-zero, 
le-add-cancel
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
lambdaFormation, 
independent_pairFormation, 
cut, 
introduction, 
extract_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
thin, 
hypothesisEquality, 
dependent_functionElimination, 
hypothesis, 
intEquality, 
cumulativity, 
baseClosed, 
sqequalRule, 
lambdaEquality, 
productEquality, 
universeEquality, 
dependent_pairFormation, 
because_Cache, 
independent_isectElimination, 
equalityTransitivity, 
equalitySymmetry, 
unionElimination, 
natural_numberEquality, 
int_eqEquality, 
isect_memberEquality, 
voidElimination, 
voidEquality, 
computeAll, 
productElimination, 
independent_functionElimination, 
addLevel, 
instantiate, 
levelHypothesis, 
promote_hyp, 
hypothesis_subsumption, 
rename, 
isect_memberFormation, 
imageElimination, 
axiomEquality, 
setElimination, 
addEquality, 
applyEquality, 
minusEquality
Latex:
\mforall{}T:Type.  \mforall{}eq:EqDecider(T).  \mforall{}L:T  List.
    (||remove-repeats(eq;L)||  =  1  \mLeftarrow{}{}\mRightarrow{}  \mexists{}x:T.  ((x  \mmember{}  L)  \mwedge{}  (\mforall{}y:T.  y  =  x  supposing  (y  \mmember{}  L))))
Date html generated:
2017_04_17-AM-09_10_58
Last ObjectModification:
2017_02_27-PM-05_19_07
Theory : decidable!equality
Home
Index