Nuprl Lemma : remove-repeats-length-one

T:Type. ∀eq:EqDecider(T). ∀L:T List.
  (||remove-repeats(eq;L)|| 1 ∈ ℤ ⇐⇒ ∃x:T. ((x ∈ L) ∧ (∀y:T. x ∈ supposing (y ∈ L))))


Proof




Definitions occuring in Statement :  remove-repeats: remove-repeats(eq;L) l_member: (x ∈ l) length: ||as|| list: List deq: EqDecider(T) uimplies: supposing a all: x:A. B[x] exists: x:A. B[x] iff: ⇐⇒ Q and: P ∧ Q natural_number: $n int: universe: Type equal: t ∈ T
Definitions unfolded in proof :  all: x:A. B[x] iff: ⇐⇒ Q and: P ∧ Q implies:  Q uall: [x:A]. B[x] member: t ∈ T prop: rev_implies:  Q so_lambda: λ2x.t[x] uimplies: supposing a so_apply: x[s] exists: x:A. B[x] ge: i ≥  decidable: Dec(P) or: P ∨ Q satisfiable_int_formula: satisfiable_int_formula(fmla) false: False not: ¬A top: Top cand: c∧ B set-equal: set-equal(T;x;y) assert: b ifthenelse: if then else fi  btrue: tt sq_type: SQType(T) guard: {T} true: True cons: [a b] bfalse: ff uiff: uiff(P;Q) less_than: a < b squash: T nat: le: A ≤ B subtract: m subtype_rel: A ⊆B less_than': less_than'(a;b)
Lemmas referenced :  set-equal-remove-repeats equal-wf-T-base length_wf remove-repeats_wf exists_wf l_member_wf all_wf isect_wf equal_wf list_wf deq_wf hd_wf decidable__le satisfiable-full-omega-tt intformand_wf intformnot_wf intformle_wf itermConstant_wf itermVar_wf intformeq_wf int_formula_prop_and_lemma int_formula_prop_not_lemma int_formula_prop_le_lemma int_term_value_constant_lemma int_term_value_var_lemma int_formula_prop_eq_lemma int_formula_prop_wf hd_member list-cases null_nil_lemma length_of_nil_lemma subtype_base_sq int_subtype_base false_wf product_subtype_list null_cons_lemma length_of_cons_lemma member-remove-repeats length-one-iff intformless_wf int_formula_prop_less_lemma remove-repeats-no_repeats nil_member length_wf_nat nat_wf decidable__lt not-lt-2 condition-implies-le minus-add minus-one-mul zero-add minus-one-mul-top add-commutes add_functionality_wrt_le add-associates add-zero le-add-cancel
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity lambdaFormation independent_pairFormation cut introduction extract_by_obid sqequalHypSubstitution isectElimination thin hypothesisEquality dependent_functionElimination hypothesis intEquality cumulativity baseClosed sqequalRule lambdaEquality productEquality universeEquality dependent_pairFormation because_Cache independent_isectElimination equalityTransitivity equalitySymmetry unionElimination natural_numberEquality int_eqEquality isect_memberEquality voidElimination voidEquality computeAll productElimination independent_functionElimination addLevel instantiate levelHypothesis promote_hyp hypothesis_subsumption rename isect_memberFormation imageElimination axiomEquality setElimination addEquality applyEquality minusEquality

Latex:
\mforall{}T:Type.  \mforall{}eq:EqDecider(T).  \mforall{}L:T  List.
    (||remove-repeats(eq;L)||  =  1  \mLeftarrow{}{}\mRightarrow{}  \mexists{}x:T.  ((x  \mmember{}  L)  \mwedge{}  (\mforall{}y:T.  y  =  x  supposing  (y  \mmember{}  L))))



Date html generated: 2017_04_17-AM-09_10_58
Last ObjectModification: 2017_02_27-PM-05_19_07

Theory : decidable!equality


Home Index