Nuprl Lemma : int_lt_to_int_upper_uniform

i:ℤ. ∀[A:{i 1...} ⟶ ℙ]. ({∀[j:ℤ]. A[j] supposing i < j} ⇐⇒ {∀[j:{i 1...}]. A[j]})


Proof




Definitions occuring in Statement :  int_upper: {i...} less_than: a < b uimplies: supposing a uall: [x:A]. B[x] prop: guard: {T} so_apply: x[s] all: x:A. B[x] iff: ⇐⇒ Q function: x:A ⟶ B[x] add: m natural_number: $n int:
Definitions unfolded in proof :  guard: {T} all: x:A. B[x] uall: [x:A]. B[x] iff: ⇐⇒ Q and: P ∧ Q implies:  Q member: t ∈ T prop: so_lambda: λ2x.t[x] uimplies: supposing a so_apply: x[s] int_upper: {i...} decidable: Dec(P) or: P ∨ Q not: ¬A rev_implies:  Q false: False uiff: uiff(P;Q) subtract: m subtype_rel: A ⊆B top: Top le: A ≤ B less_than': less_than'(a;b) true: True
Lemmas referenced :  int_upper_wf uall_wf isect_wf less_than_wf decidable__le false_wf not-le-2 less-iff-le condition-implies-le add-associates minus-add minus-one-mul add-swap minus-one-mul-top zero-add add-commutes add_functionality_wrt_le le-add-cancel2 le_wf member-less_than decidable__lt not-lt-2 le-add-cancel
Rules used in proof :  sqequalSubstitution sqequalRule sqequalReflexivity sqequalTransitivity computationStep lambdaFormation isect_memberFormation independent_pairFormation cut lemma_by_obid sqequalHypSubstitution isectElimination thin addEquality hypothesisEquality natural_numberEquality hypothesis intEquality lambdaEquality applyEquality dependent_set_memberEquality dependent_functionElimination unionElimination voidElimination productElimination independent_functionElimination independent_isectElimination isect_memberEquality voidEquality because_Cache minusEquality introduction rename functionEquality cumulativity universeEquality setElimination

Latex:
\mforall{}i:\mBbbZ{}.  \mforall{}[A:\{i  +  1...\}  {}\mrightarrow{}  \mBbbP{}].  (\{\mforall{}[j:\mBbbZ{}].  A[j]  supposing  i  <  j\}  \mLeftarrow{}{}\mRightarrow{}  \{\mforall{}[j:\{i  +  1...\}].  A[j]\})



Date html generated: 2016_05_13-PM-04_02_41
Last ObjectModification: 2015_12_26-AM-10_56_41

Theory : int_1


Home Index