Nuprl Lemma : absval-as-imax

[a:ℤ]. (imax(a;-a) |a| ∈ ℤ)


Proof




Definitions occuring in Statement :  imax: imax(a;b) absval: |i| uall: [x:A]. B[x] minus: -n int: equal: t ∈ T
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T all: x:A. B[x] implies:  Q bool: 𝔹 unit: Unit it: btrue: tt uiff: uiff(P;Q) and: P ∧ Q uimplies: supposing a less_than: a < b less_than': less_than'(a;b) top: Top true: True squash: T not: ¬A false: False prop: bfalse: ff exists: x:A. B[x] or: P ∨ Q sq_type: SQType(T) guard: {T} bnot: ¬bb ifthenelse: if then else fi  assert: b decidable: Dec(P) satisfiable_int_formula: satisfiable_int_formula(fmla) le: A ≤ B subtype_rel: A ⊆B iff: ⇐⇒ Q rev_implies:  Q
Lemmas referenced :  lt_int_wf bool_wf eqtt_to_assert assert_of_lt_int top_wf less_than_wf eqff_to_assert equal_wf bool_cases_sqequal subtype_base_sq bool_subtype_base assert-bnot le_int_wf assert_of_le_int decidable__equal_int satisfiable-full-omega-tt intformand_wf intformnot_wf intformeq_wf itermMinus_wf itermVar_wf intformless_wf itermConstant_wf intformle_wf int_formula_prop_and_lemma int_formula_prop_not_lemma int_formula_prop_eq_lemma int_term_value_minus_lemma int_term_value_var_lemma int_formula_prop_less_lemma int_term_value_constant_lemma int_formula_prop_le_lemma int_formula_prop_wf le_wf squash_wf true_wf imax_unfold absval_unfold iff_weakening_equal
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation cut hypothesis intEquality hypothesisEquality minusEquality introduction extract_by_obid sqequalHypSubstitution isectElimination thin natural_numberEquality lambdaFormation unionElimination equalityElimination equalityTransitivity equalitySymmetry productElimination independent_isectElimination because_Cache sqequalRule lessCases sqequalAxiom isect_memberEquality independent_pairFormation voidElimination voidEquality imageMemberEquality baseClosed imageElimination independent_functionElimination dependent_pairFormation promote_hyp dependent_functionElimination instantiate cumulativity lambdaEquality int_eqEquality computeAll applyEquality universeEquality

Latex:
\mforall{}[a:\mBbbZ{}].  (imax(a;-a)  =  |a|)



Date html generated: 2017_04_14-AM-09_13_22
Last ObjectModification: 2017_02_27-PM-03_51_01

Theory : int_2


Home Index